同济第六版《高等数学》教案WORD版-第04章-不定积分.doc

上传人:可**** 文档编号:77377837 上传时间:2023-03-14 格式:DOC 页数:25 大小:1.14MB
返回 下载 相关 举报
同济第六版《高等数学》教案WORD版-第04章-不定积分.doc_第1页
第1页 / 共25页
同济第六版《高等数学》教案WORD版-第04章-不定积分.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《同济第六版《高等数学》教案WORD版-第04章-不定积分.doc》由会员分享,可在线阅读,更多相关《同济第六版《高等数学》教案WORD版-第04章-不定积分.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高等数学教案 第四章 不定积分 第四章 不定积分教学目的:1、 理解原函数概念、不定积分的概念.2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。3、 会求有理函数、三角函数有理式和简单无理函数的积分.教学重点:1、 不定积分的概念;2、 不定积分的性质及基本公式;3、 换元积分法与分部积分法。教学难点:1、 换元积分法;2、 分部积分法;3、 三角函数有理式的积分。4. 1 不定积分的概念与性质 一、原函数与不定积分的概念 定义1 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对任一xI, 都有F (x)=f(x)或dF(x)=f(x)d

2、x, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数. 例如 因为(sin x)=cos x , 所以sin x 是cos x 的原函数. 又如当x (1, +)时, 因为, 所以是的原函数. 提问: cos x和还有其它原函数吗? 原函数存在定理 如果函数f(x)在区间I上连续, 那么在区间I上存在可导函数F(x), 使对任一x I 都有F (x)=f(x). 简单地说就是: 连续函数一定有原函数. 两点说明: 第一, 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限多个原函数, F(x)+C都是f(x)的原函数, 其中C是任意常数. 第二, f(x)的

3、任意两个原函数之间只差一个常数, 即如果F(x)和F(x)都是f(x)的原函数, 则F(x)-F(x)=C (C为某个常数). 定义2 在区间I上, 函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx )在区间I上的不定积分, 记作 . 其中记号称为积分号, f(x)称为被积函数, f(x)dx称为被积表达式, x 称为积分变量. 根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么F(x)+C就是f(x)的不定积分, 即. 因而不定积分可以表示f(x)的任意一个原函数. 例1. 因为sin x 是cos x 的原函数, 所以 . 因为是的原函数, 所以 . 例2。

4、求函数的不定积分. 解:当x0时, (ln x), (x0); 当x0时, ln(-x), (x0). 合并上面两式, 得到 (x0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程. 解 设所求的曲线方程为y=f(x), 按题设, 曲线上任一点(x, y)处的切线斜率为y=f (x)=2x, , 即f(x)是2x 的一个原函数. 因为 , 故必有某个常数C使f(x)=x 2+C, 即曲线方程为y=x 2+C. 因所求曲线通过点(1, 2), 故2=1+C, C=1. 于是所求曲线方程为y=x2+1. 积分曲线: 函数f(x)的原函数的图形称

5、为f(x)的积分曲线. 从不定积分的定义, 即可知下述关系: , 或 ; 又由于F(x)是F (x)的原函数, 所以 , 或记作 . 由此可见, 微分运算(以记号d表示)与求不定积分的运算(简称积分运算, 以记号表示)是互逆的. 当记号与d 连在一起时, 或者抵消, 或者抵消后差一个常数. 二、基本积分表(1)(k是常数), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15). 例4 . 例5 . 例6 . 三、不定积分的性质 性质1 函数的和的不定积分等各个函数的不定积分的和, 即 . 这是因为

6、, =f(x)+g(x). 性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即 (k是常数, k 0). 例7。 . 例8 . 例9 . 例10 . 例11 . 例12 . 例13 = tan x - x + C . 例14 . 例15 . 4. 2 换元积分法 一、第一类换元法 设f(u)有原函数F(u), u=j(x), 且j(x)可微, 那么, 根据复合函数微分法, 有d Fj(x) =d F(u)=F (u)d u= F j(x) dj(x)= F j(x) j(x)d x ,所以 F j(x)j(x)dx= F j(x) dj(x)= F (u)d u= d

7、 F(u)=d Fj(x) , 因此 .即 =F(u) +C u = j(x) = Fj(x)+C. 定理1 设f(u)具有原函数, u=j(x)可导, 则有换元公式 . 被积表达式中的dx 可当作变量x的微分来对待, 从而微分等式j(x)dx =du可以应用到被积表达式中. 在求积分时, 如果函数g(x)可以化为g(x)= fj(x)j(x)的形式, 那么. 例1。 =sin 2x+C . 例2。 . 例3。 . 例4。 . 例5。 =-lncos x|+C . 即 . 类似地可得. 熟练之后, 变量代换就不必再写出了. 例6. . 即 . 例7. . 例8. 当a0时, . 即 . 例9。

8、 . 即 . 例10。 . 例11。 . 含三角函数的积分: 例12. . 例13. . 例14。 . 例15。 . 例16。 . 例17。 =ln csc x -cot x +C . 即 =ln |csc x -cot x |+C . 例18。 =ln sec x + tan x + C. 即 =ln sec x + tan x | + C. 二、第二类换元法 定理2 设x =j(t)是单调的、可导的函数, 并且j(t)0. 又设f j(t)j(t)具有原函数F(t), 则有换元公式.其中t=j-1(x)是x=j(t)的反函数. 这是因为 . 例19. 求(a0). 解: 设x=a sin

9、t , , 那么, dx =a cos t d t , 于是 . 因为, , 所以. 解: 设x=a sin t , , 那么 . 提示:, dx=acos tdt .提示: , . 例20。 求(a0). 解法一: 设x=a tan t, , 那么=a sec t , dx=a sec 2t d t , 于是= ln |sec t + tan t +C . 因为, , 所以= ln |sec t + tan t +C, 其中C 1=C-ln a . 解法一: 设x=a tan t, , 那么 =ln|sect+tant+C , 其中C 1=C-ln a . 提示:=asect , dx=a

10、sec 2t dt , 提示:, . 解法二: 设x=a sh t , 那么 ,其中C 1=C-ln a . 提示: =a ch t , dx =a ch t d t . 例23。 求(a0). 解: 当xa 时, 设x=a sec t (), 那么=a tan t , 于是= ln sec t + tan t +C . 因为, , 所以= ln |sec t + tan t +C , 其中C 1=C-ln a . 当xa 时, 令x=-u , 则ua, 于是 , 其中C 1=C-2ln a . 综合起来有. 解: 当xa 时, 设x=a sec t (), 那么 ,其中C 1=C-ln a

11、. 当xa, 于是 , 其中C 1=C-2ln a . 提示:=atant .提示:, . 综合起来有 . 补充公式: (16),(17),(18),(19),(20),(21),(22),(23), (24). 4. 3 分部积分法 设函数u=u(x)及v=v(x)具有连续导数. 那么, 两个函数乘积的导数公式为(uv)=uv+uv, 移项得 uv=(uv)-uv. 对这个等式两边求不定积分, 得 , 或,这个公式称为分部积分公式. 分部积分过程:. 例1 =x sin x-cos x+C . 例2 . 例3 =x2ex-2xex+2ex+C =ex(x2-2x+2 )+C. 例4 . 例5

12、 . 例6 . 例7 求. 解 因为 , 所以 . 例8 求. 解 因为 , 所以 . 例9 求, 其中n为正整数. 解 ; 当n1时,用分部积分法, 有 ,即 ,于是 .以此作为递推公式, 并由即可得. 例10 求. 解 令x =t 2 , 则 , dx=2tdt. 于 . . 第一换元法与分部积分法的比较: 共同点是第一步都是凑微分 , .哪些积分可以用分部积分法?, , ;, , ;, .,. 4. 4 几种特殊类型函数的积分 一、有理函数的积分 有理函数的形式: 有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数: ,其中m和n都是非负整数; a0, a1, a2, ,

13、an及b0, b1, b2, , bm都是实数, 并且a00, b00. 当n0)的积分1234567五、含有ax2+bx+c (a0)的积分六、含有 (a0)的积分123456789例3求. 解: 因为, 所以这是含有的积分, 这里. 在积分表中查得公式 . 于是 . 七、含有(a0)的积分123456789八、含有(a0)的积分123456789九、含有的积分十、含有或的积分十一、含有三角函数的积分123456789101112131414例2求. 解: 这是含三角函数的积分. 在积分表中查得公式 . 这里a=5、b=-4, a 2b2, 于是 . 例4 求. 解: 这是含三角函数的积分. 在积分表中查得公式 , . 这里n=4, 于是 . 内蒙古财经大学统计与数学学院公共数学教研室

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁