2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(名师精选).docx

上传人:可**** 文档编号:77374552 上传时间:2023-03-14 格式:DOCX 页数:36 大小:840.70KB
返回 下载 相关 举报
2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(名师精选).docx_第1页
第1页 / 共36页
2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(名师精选).docx_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(名师精选).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学第二学期第十五章平面直角坐标系同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点关于轴对称的点的坐标是( )ABCD2、在平面直角坐标系中,点P(2,3)在( )A第一象限B第二象限C第

2、三象限D第四象限3、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:B点的坐标为(,);线段AB的长为3个单位长度;线段AB所在的直线与x轴平行;点M(,)可能在线段AB上;点N(,)一定在线段AB上其中正确的结论有( )A2个B3个C4个D5个4、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)5、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(1,1),第四次向右跳动5 个单位至点A4(3,2),依此

3、规律跳动下去,点A第2020次跳动至点A2020的坐标是( )A(2020,1010)B(1011,1010)C(1011,1010)D(2020,1010)6、小明在介绍郑州外国语中学位置时,相对准确的表述为( )A陇海路以北B工人路以西C郑州市人民政府西南方向D陇海路和工人路交叉口西北角7、第24届冬季奥林匹克运动会将于2022年2月4日20日在北京市和张家口市联合举行以下能够准确表示张家口市地理位置的是( )A离北京市100千米B在河北省C在怀来县北方D东经114.8,北纬40.88、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )A5B1CD9、如图,在坐标系中用手盖住一点,若

4、点到轴的距离为2,到轴的距离为6,则点的坐标是( )ABCD10、在平面直角坐标系中,点关于轴的对称点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点与,关于y轴对称,则的值为_2、已知点P(,)在x轴上,则_3、点A关于轴的对称点坐标是,则点关于轴的对称点坐标是_.4、已知点,若PQ/x轴,且线段,则_,_5、已知点M坐标为,点M到x轴距离为_三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题(1)画出关于x轴对称的,并写出点的坐标(_,_)(2)点P

5、是x轴上一点,当的长最小时,点P坐标为_;(3)点M是直线BC上一点,则AM的最小值为_2、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标3、在平面直角坐标系xOy中,直线l:xm表示

6、经过点(m,0),且平行于y轴的直线给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点例如,如图,点M(3,2)的一次反射点为(3,2),点M关于直线l:x1的二次反射点为(1,2)已知点A(1,1),B(3,1),C(3,3),D(1,1)(1)点A的一次反射点为 ,点A关于直线:x2的二次反射点为 ;(2)点B是点A关于直线:xa的二次反射点,则a的值为 ;(3)设点A,B,C关于直线:xt的二次反射点分别为,若与BCD无公共点,求t的取值范围4、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G

7、先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形例如:点P(2,1)的伴随图形是点P(-2,-1).(1)点Q(-3,-2)的伴随图形点Q的坐标为 ;(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).当t=-1,且直线m与y轴平行时,点A的伴随图形点A的坐标为 ;当直线m经过原点时,若ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围5、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(4,5),(1,3)(1)请在如图所

8、示的网格平面内作出平面直角坐标系(2)请作出ABC关于y轴对称的ABC(3)求ABC的面积 6、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线AOB以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线BOA以每秒3个单位长度的速度向终点A运动P,Q两点同时出发,当其中一点到达终点时另一点也停止运动直线l经过原点O,分别过P,Q两点作PEl于E,QFl于点F,设点P的运动时间为t(秒):(1)当P,Q两点相遇时,求t的值;(2)在整个运动过程中,用含t的式子表示Q点的坐标;(3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q

9、,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由7、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(1,1)、C(4,1)依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积8、如图1所示,已知点,有以点为顶点的直角的两边分别与轴、轴相交于点(1)试说明;(2)若点坐标为,点坐标为,请直接写出与之间的数量关系;(3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于点,使得点

10、为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;(4)在(3)条件下,请直接写出的值9、如图,在平面直角坐标系中,已知点A(1,5),B(3,1)和C(4,0)(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线段AB绕点A逆时针旋转90,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,画出线段MN并写出点M的坐标;直接写出线段MN与线段CD的位置关系10、如图,在平面直角坐标系中,AOCO6,AC交y轴于点B,BAO30,CO的垂直平

11、分线过点B交x轴于点E(1)求AE的长;(2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;(3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得2,若存在,请求出t值;若不存在,请说明理由-参考答案-一、单选题1、B【分析】根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案【详解】解:点A的坐标为(-2,-3),点A(-2,-3)关于

12、x轴对称的点的坐标是(-2,3)故选:B【点睛】本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键2、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(2,3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键平面直角坐标系中各象限点的坐标特点:第一象限的点:横坐标0,纵坐标0;第二象限的点:横坐标0;第三象限的点:横坐标0,纵坐标0,纵坐标03、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断,根据平移的性质

13、即可求得的长,进而判断,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断,根据纵坐标的特点即可判断【详解】解:点A(,)沿着x的正方向向右平移()个单位后得到B点,B点的坐标为(,);故正确;则线段AB的长为;故不正确;A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等线段AB所在的直线与x轴平行;故正确若点M(,)在线段AB上;则,即,不存在实数故点M(,)不在线段AB上;故不正确同理点N(,)在线段AB上;故正确综上所述,正确的有,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键4、D【分析】根据垂线段最短可知BCl,即

14、BCx轴,由已知即可求解【详解】解:点A(0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时, BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键5、C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5

15、,4),第2n次跳动至点的坐标是(n+1,n),第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010)故选C【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键6、D【分析】根据位置的确定需要两个条件:方向和距离进行求解即可【详解】解:A、陇海路以北只有方向,不能确定位置,故不符合题意;B、工人路以西只有方向,不能确定位置,故不符合题意;C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;故选D【点睛】本题主要考查了

16、确定位置,熟知确定位置的条件是解题的关键7、D【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8,北纬40.8为准确的位置信息故选:D【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键8、D【分析】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可【详解】点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,

17、b)是同一个点,a=-3,b=-2,-5,故选D【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键9、C【分析】首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标【详解】解:P点在第四象限,P点横坐标大于0,纵坐标小于0,P点到x轴的距离为2,到y轴的距离为6,P点的坐标为(6,-2),故选C【点睛】本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征10、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案【详解】解:点P(2,-1)关于x轴的对称点的

18、坐标为(2,1),故选:B【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律二、填空题1、5【分析】关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.【详解】解: 点与,关于y轴对称, 故答案为:5【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.2、【分析】根据x轴上点的纵坐标为0求解即可【详解】解:点P在x轴上,a-3=0,即a=3,故答案为:3【点睛】本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点3、(2,1)

19、【分析】根据关于坐标轴对称的点的特征,先求得的坐标,进而求得的坐标【详解】解:点A关于轴的对称点坐标是,点坐标是点关于轴的对称点坐标是故答案为:【点睛】本题考查了关于坐标轴对称的点的坐标特征,掌握关于坐标轴对称的点的坐标特征是解题的关键关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数4、或4 2 【分析】根据轴可知纵坐标相等得出的值,再由,分点在的左右两侧相距3个单位得出的值【详解】,且轴,又,或,故答案为:4或,2【点睛】平面直角坐标系中点的坐标,掌握轴可知纵坐标相等是解题的关键5、7【分析】根据点(x,y)到x轴的距离等于y求解即可【详

20、解】解:点M 到x轴距离为7=7,故答案为:7【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键三、解答题1、(1)5,-3;(2)(,0);(3)【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解【详解】解:(1)如图,A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作设直线BC1

21、的解析式为y=kx+b,点C1的坐标为(5,-3),点B的坐标为(1,2),解得:,直线BC1的解析式为y=x+,当y=0时,x=,点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,ABC的面积为24-21-41-31=;BC=,AM=,AM=故答案为:【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的也考查了最短路径问题注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数2、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先

22、找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可【详解】解:(1)如图所示,即为所求;(2)如图所示,PQM即为所求;P是D(-3,0)横坐标减2,纵坐标加3得到的,点P的坐标为(-5,3)【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点3、(1)(1,1);(5,1);(2)-2;(3)2或1【分析】(1)根据一次反射点和二次反射点的定义求解即可;(2)根据二次反射点的意义求解即

23、可;(3)根据题意得,分0和0时与BCD无公共点,求出t的取值范围即可【详解】解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),点A关于直线:x2的二次反射点为(5,1)故答案为: (1,1);(5,1) (2)A(1,1),B(3,1),且点B是点A关于直线:xa的二次反射点, 解得, 故答案为: 2 (3)由题意得,(1,1),(3,1),(3,3),点D(1,1)在线段上当0时,只需关于直线的对称点在点B左侧即可,如图1当与点B重合时,2,当2时,与BCD无公共点当0时,只需点D关于直线x的二次反射点在点D右侧即可,如图2,当与点D重合时,1,当1时,与BCD

24、无公共点综上,若与BCD无公共点,的取值范围是2,或1【点睛】本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解4、(1)(3,2)(2)(3,-1);-1t1或2t4【分析】(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;(2)时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;由题意知直线为直线,、三点的轴,的伴随图形点坐标依次表示为:,由题意可得,或解出的取值范围即可(1)解:由题意知沿轴翻折得点坐标为;沿轴翻折得点坐标为故答案为:(2)解:,点坐标为,

25、直线为,沿轴翻折得点坐标为沿直线翻折得点坐标为即为故答案为:解:直线经过原点直线为、的伴随图形点坐标先沿轴翻折,点坐标依次为,;然后沿直线翻折,点坐标依次表示为:,由题意可知:或解得:或【点睛】本题考查了直角坐标系中的点对称,几何图形翻折解题的关键在于正确的将翻折后的点坐标表示出来5、(1)见解析;(2)见解析;(3)4【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A、B、C,顺次连线即可得到ABC;(3)利用面积加减法计算(1)如图所示:(2)解:如图所示:(3)解:ABC的面积:34422123124134,故答案为:4【点睛】此题考查了确定直角坐标系,作轴对称图形,计

26、算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键6、(1)秒;(2)Q(,0)或 Q(0,);(3)能全等,(5,0)或(0,)【分析】(1)由P,Q两点相遇即P,Q两点运动的路程和为OB+OA=8+6,据此列方程求解即可;(2)分点Q在线段OB上和在线段OA上两种情况讨论,即可求解;(2)分三种情况讨论,根据全等三角形的性质即可求解【详解】解:(1)点A的坐标为A(0,6),点B的坐标为B(8, 0),OA=6,OB=8,根据题意得:,解得: 当P,Q两点相遇时,的值为秒;(2)点Q可能在线段OB上,也可能在线段OA上当点Q在线段OB上时:Q(8-3t,0);当

27、点Q在线段OA上时:Q(0,3t-8);综上,Q点的坐标为(8-3t,0)或(0,3t-8);(3)答:在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能全等理由:当时,点Q在OB上,点P在OA上,PEOQFO90,POEQOF90,OQFQOF90,POEOQF,POEOQF,POQO,即:,解得:t=1; 当时,点Q在OA上,点P也在OA上,PEOQFO90,POEQOF(公共角),即P,Q重合时,POEQOF,POQO,即:,解得:; 当点Q运动到A点时,P点还未到达O点,所以不存在这种种情况当t1时,点Q在x轴上,(5,0);当t时,点Q在y轴上,(0,)当Q点

28、坐标为(5,0)或(0,)时,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形全等【点睛】本题考查了坐标与图形,全等三角形的性质,一元一次方程的应用,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题7、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积=16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键8、(1

29、)见解析;(2);(3)相等,见解析;(4)9【分析】(1)过点作轴于点,轴于点,证明即可得到结论;(2),由可得结论;(3)连接OP,根据题意可得,从而得,再证明S可得,进一步可得结论;(4)过点P作PQy轴,得PQ=OQ=3,根据题意可得,故BQ=3,从而可求出,由(3)得,从而可得【详解】解:(1)过点作轴于点,轴于点,点坐标为又(2)由(1)知 点坐标为,点坐标为,且 (3)相等,理由:连接,如图,且,为中点,又在和中 (4)由(3)知 过点P作PQy轴于点Q,P(3,-3)PQ=OQ=3 =9【点睛】本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,

30、找出判定三角形全等的条件是解答本题的关键9、(1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)作图见解析,点M的坐标为(1,-5);MNCD【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90,即可画出旋转后所得的线段AE;(3)分别作出A,B的对应点M,N,连接即可;由平行线的传递性可得答案【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)如图所示,线段MN即为所求,点M的坐标为(1,-5)

31、;线段MN与线段AB关于原点成中心对称,MNAB,线段CD是由线段AB平移得到的,CDAB,MNCD【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题10、(1)12;(2);(3)当或时,使得【分析】(1)由OA=OC=6,BAO=30,得到OAC=OCA=30,则COE=OAC+OCA=60,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则COE是等边三角形,由此即可得到答案;(2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;(3)分N在

32、EC上和EC的延长线上两种情况,构造全等三角形求解即可【详解】解:(1)OA=OC=6,BAO=30,OAC=OCA=30,COE=OAC+OCA=60,BE是线段OC的垂直平分线平分线,OE=CE,COE是等边三角形,OE=OC=AO=6,AE=AO+OE=12;(2)如图1所示,过点C作CKx轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),BE是线段OC的垂直平分线,CEP=OEP,PNOE,NPE=OEP,CGN=COE=60,CNG=CEO=60,NPE=NEP,CGN是等边三角形,NP=NE=t,NG=CN=CE-NE=6-t,PG=d=NG-NP=6-t-t=6

33、-2t,当直线PN刚好经过H点时,此时CH=CN=3,即当t=3时,直线PN经过H点,当直线PN在H点下方或经过H点时,d=6-2t(0t3);如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),同理可证NP=NE=t,NG=CN=CE-CN=6-t,PG=d=NP-NG=t-(6-t)=2t-6(3t6);如图3所示,当直线PN在C点上方时同理可证NP=NE=t,NG=CN=EN-CE=t-6,PG=d=NP+NG=t+t-6=2t-6(t6),综上所述, ;(3)如图3-1所示,当N在CE上时,过点N作NRx轴交OC于R,同(2)可证CRN是等边三角形,RN=CN=CR,M、N运动的速度相同,AM=NE,又AO=EC,MO=NR,NRMO,RNK=OMK,NRK=MOK,MOKNRK(ASA),OK=RK,OM=RN,即,解得;如图3-2所示,当C在EC的延长线上时,同理可证,解得,综上所述,当或时,使得【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁