《2021-2022学年基础强化北师大版八年级数学下册第五章分式与分式方程定向测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第五章分式与分式方程定向测试试卷(含答案详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、华华同学借了一本书,共280页,要在1周借期内读完当他读了一半时,发现平均每天要多读21页才能在借期内读完
2、他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是( )ABCD2、关于的分式方程无解,则( )ABC或D或3、计算的结果是( )ABCD4、已知a1x+1(x0且x1),a21(1a1),a31(1a2),则a2021()AxBx+1CD5、已知:,则的值是()ABC5D56、八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达已知汽车的速度是自行车速度的2倍,设汽车到博物馆所需的时间为xh,则下列方程正确的是( )ABCD7、若把分式的x,y同时扩大2倍,则分式的值为()A扩大为原来的
3、2倍B缩小为原来的C不变D缩小为原来的8、已知ab5,ab3,则( )A2BC4D9、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-710、如果把中的和都扩大到原来的5倍,那么分式的值( )A扩大到原来的5倍B不变C缩小为原来的D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、新型冠状病毒外包膜直径最大约140纳米(1纳米毫米)用科学记数法表示其最大直径为_毫米2、甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量
4、比乙用3000元购买的商品数量少10件,若甲第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,则甲两次购买这种商品的平均单价是 _元/件,乙第一次购买这种商品的单价是 _元/件3、若是关于的方程的解,则的值为_4、若分式的值为零,则x_5、如果分式的值为0,则x的值是_三、解答题(5小题,每小题10分,共计50分)1、某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也
5、增加了25%,那么整个工程完成后承包方需要支付工资多少元?2、解方程:3、计算:()(6x+4)x4、解分式方程:5、计算:-参考答案-一、单选题1、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案【详解】读前一半所用的天数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程2、C【分析】先解分式方程得,再由方程无解可得或或,分别求出的值即可【详解】解:,方程两边同时乘得:,移项得:,合并同类项得:,方程无解,或或,当时,解得:,或,故选:C【点睛】本题考查分式方程的解,熟练掌握分式
6、方程无解的条件是解题的关键3、A【分析】根据同分母分式的加法法则,即可求解【详解】解:原式= ,故选A【点睛】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键4、C【分析】根据题中所给已知等式先求出前4个数,发现每3个数一个循环,进而可得则a2021等于a2的值【详解】解:由a1=x+1(x0或x-1),所以,a4=1(1-a3)=x+1,20213=6732,故选:C【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律5、D【分析】首先分式方程去分母化为整式方程,求出(ba)的值,把(ba)看作一个整体代入分式约分即可【详解】
7、解:,baab,5;故选:D【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a)看作一个整体代入所求分式约分是解题关键6、C【分析】设汽车到博物馆所需的时间为xh,根据时间路程速度,汽车的速度是自行车速度的2倍,即可得出关于x的分式方程,此题得解【详解】解:设汽车到博物馆所需的时间为xh,根据题意列方程得,;故选:C【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键7、D【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:根据题意得:,即把分式的x,y同时扩大2倍
8、,则分式的值缩小为原来的,故选:D【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论8、B【分析】根据异分母的加减进行计算,进而根据完全平方公式的变形,再将已知式子的值整体代入求解即可【详解】解: ab5,ab3,原式故选B【点睛】本题考查了分式的化简求值,整体代入是解题的关键9、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的
9、数字前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断【详解】分式中的x与y分别用5x与5y代替后,得,由此知,此时分式的值扩大到原来的5倍故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍二、填空题1、【详解】解:因为1纳米毫米毫米,所以140纳米毫米毫米,故答案为:【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成
10、的形式,其中,为整数,这种记数的方法叫做科学记数法)是解题关键确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值时,是正数;当原数的绝对值时,是负数2、48 60 【分析】设甲第一次购买这种商品的价格为x元,然后根据甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件列出方程求出甲第一次购买这种商品的价格60元/件,即可得到乙第一次购买商品的价格和甲第一次购买商品的数量以及甲第二次购买商品的价格和数量,由此即可得到答案【详解】解:设甲第一次购买这种商品的价格为x元,由题意得:,解得,经检验是原方程的解,甲第一次购买这种商品的价格60元/件
11、,乙第一次购买这种商品的单价是60元/件,甲第一次购买商品的数量为件,甲第二次再去采购该商品时,单价比上次少了20元/件,甲第二次再去采购该商品时的价格为60-20=40元/件,甲第二次购买的商品数量为件,甲两次购买这种商品的平均单价是元/件,故答案为:48;60【点睛】本题主要考查了分式方程的应用,解题的关键在于能够根据题意列出方程求解3、【分析】把代入方程,得到关于的一元一次方程,再解方程即可.【详解】解: 是关于的方程的解, 解得: 故答案为:【点睛】本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.4、-3【分析】由已知可得,分式的分子为零,分母
12、不为零,由此可得x2-9=0,x-30,解出x即可【详解】解:分式的值为零,x2-9=0,且x-30,解得x=-3故答案为:-3【点睛】本题考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零5、#【分析】分式的值为零时,分子等于零,即【详解】解:由题意知,解得此时分母,符合题意故答案是:【点睛】本题主要考查了分式的值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零三、解答题1、(1)原来每天加固河堤80米;(2)整个工程完成后承包方需要支付工资24000元【分析】(1)设原来每天加固河堤米,则采用新的加固模式后每天加固米,然后根据用26天完成了全部加固任
13、务,列方程求解即可;(2)先算出提高工作效率后每天加固的长度,然后进行求解即可【详解】解:(1)设原来每天加固河堤米,则采用新的加固模式后每天加固米 根据题意得:,解这个方程得: 经检验可知,是原分式方程的根,并符合题意; 答:原来每天加固河堤80米;(2)(米)承包商支付给工人的工资为:(元)答:整个工程完成后承包方需要支付工资24000元【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解2、【分析】方程两边同时乘以去掉分母,把分式方程化为整式方程,求出方程的解并检验后即得结果【详解】解:,检验:当时, 是原方程的解 原方程的解是【点睛】本题考查了分式方程的
14、解法,属于基础题目,熟练掌握求解的方法是解题的关键3、【分析】由分式的加减乘除运算进行化简,即可得到最简分式【详解】解:原式=(=(=(=;【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简4、x3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:,两边都乘以(x+1)(x1),去分母得:2(x1)x+1,解得:x3,检验:当x3时,(x+1)(x1) 0,x3是分式方程的解【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验5、【分析】确定最简公分母,用性质进行通分即可【详解】解:原式【点睛】本题考查了分式的通分,熟练掌握分式的基本性质,准确确定最简公分母是解题的关键