《学案6二项分布及其应用 (2).ppt》由会员分享,可在线阅读,更多相关《学案6二项分布及其应用 (2).ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学案学案6 6 二项分布及其应用二项分布及其应用 名师伴你行填填知学情填填知学情填填知学情填填知学情课内考点突破课内考点突破课内考点突破课内考点突破规规规规 律律律律 探探探探 究究究究考考考考 纲纲纲纲 解解解解 读读读读考考考考 向向向向 预预预预 测测测测名师伴你行考考考考 户户户户 解解解解 读读读读 二项分布二项分布及其应用及其应用了解条件概率的概念了解条件概率的概念,了解两个事件相互独立了解两个事件相互独立的概念的概念;理解理解n n次独立重复试验模型及二项分次独立重复试验模型及二项分布,并能解决一些简单问题布,并能解决一些简单问题.返回目录返回目录 名师伴你行考考考考 向向向向
2、预预预预 测测测测 返回目录返回目录 2012年高考年高考,试题难度以中低档题为主试题难度以中低档题为主,很可能与期望、很可能与期望、方差一起在解答题中考查方差一起在解答题中考查.名师伴你行返回目录返回目录 1.条件概率 一般地一般地,设设A,B为两个事件,且为两个事件,且P(A)0,称,称P(B|A)=为在事件为在事件A发生的条件下,事件发生的条件下,事件B发生的条件概率发生的条件概率.P(B|A)读作)读作 .条件概率具有概率的性质,任何事件的条件概率条件概率具有概率的性质,任何事件的条件概率都在都在0和和1之间,即之间,即0P(B|A)1.如果如果B和和C是两个互斥事件,则是两个互斥事件
3、,则P(BC|A)=.“A发生的条件下发生的条件下B的概率的概率”P(B|A)+P(C|A)名师伴你行返回目录返回目录 2.事件的相互独立性 3.独立重复试验 一般地一般地,在相同条件下重复做的在相同条件下重复做的n次试验称为次试验称为n次独立重复试验次独立重复试验.设设A,B为两个事件,若为两个事件,若P(AB)=P(A)P(B),),则称事件则称事件A与事件与事件B相互独立相互独立.如果事件如果事件A与与B相互独立,那么相互独立,那么A与与 ,A与与 ,A与与 也都相互独立也都相互独立.BBB名师伴你行 4.二项分布 返回目录返回目录 一般地一般地,在在n次独立重复试验中,用次独立重复试验
4、中,用X表示事件表示事件A发生的发生的次数,设每次试验中事件次数,设每次试验中事件A发生的概率为发生的概率为p,则,则P(X=k)=(1-p)n-k,k=0,1,2,n.此时称随机变量此时称随机变量X服从二项分布,记作服从二项分布,记作X ,并称,并称p为为 .B(n,p)成功概率成功概率 名师伴你行返回目录返回目录 考点考点考点考点1 1 事件的相互独立性事件的相互独立性事件的相互独立性事件的相互独立性甲、乙、丙三台机床各自独立地加工同一种零件甲、乙、丙三台机床各自独立地加工同一种零件,已知甲已知甲机床加工的零件是一等品而乙机床加工的零件不是一等机床加工的零件是一等品而乙机床加工的零件不是一
5、等品的概率为品的概率为 ,乙机床加工的零件是一等品而丙机床加乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为工的零件不是一等品的概率为 ,甲、丙两台机床加甲、丙两台机床加工的零件都是一等品的概率为工的零件都是一等品的概率为 .(1)分别求甲、乙、丙三台机床各自加工的零件是一等品分别求甲、乙、丙三台机床各自加工的零件是一等品 的概率;的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有从甲、乙、丙加工的零件中各取一个检验,求至少有 一个一等品的概率一个一等品的概率.名师伴你行返回目录返回目录 【分析分析分析分析】(1)将三种事件设出将三种事件设出,列方程列方程,解方程解方程
6、即可求出即可求出.(2)用间接法解比较省时用间接法解比较省时,方便方便.【解析解析解析解析】(1)设设A,B,C分别为甲、乙、丙三台机分别为甲、乙、丙三台机床各自加工的零件是一等品的事件床各自加工的零件是一等品的事件.P(AB)=P(BC)=P(AC)=,P(A)1-P(B)=P(B)1-P(C)=P(A)P(C)=由题设条件有由题设条件有 即即 名师伴你行 由由得得P(B)=1-P(C),代入代入得得 27P(C)2-51P(C)+22=0.解得解得P(C)=或或 (舍去舍去).将将P(C)=分别代入分别代入可得可得P(A)=,P(B)=.即甲、乙、丙三台机床各自加工的零件是一等品的即甲、乙
7、、丙三台机床各自加工的零件是一等品的概率分别是概率分别是 ,.返回目录返回目录 名师伴你行 (2)记记D为从甲、乙、丙加工的零件中各取一个检为从甲、乙、丙加工的零件中各取一个检验验,至少有一个一等品的事件至少有一个一等品的事件.则则P(D)=1-P(D)=1-1-P(A)1-P(B)1-P(C)=1-=.故从甲、乙、丙加工的零件中各取一个检验故从甲、乙、丙加工的零件中各取一个检验,至少至少有一个一等品的概率为有一个一等品的概率为 .返回目录返回目录 名师伴你行 (1)对照互斥事件、对立事件的定义进行判断,哪些对照互斥事件、对立事件的定义进行判断,哪些是互斥事件,哪些是对立事件,是解好题目的关键
8、是互斥事件,哪些是对立事件,是解好题目的关键.“正难则反正难则反”,一个事件的正面包含基本事件个数较多,一个事件的正面包含基本事件个数较多,而它的对立事件包含基本事件个数较少,则用公式而它的对立事件包含基本事件个数较少,则用公式P(A)=1-P(A)计算)计算.(2)审题应注意关键的词句,例如审题应注意关键的词句,例如“至少有一个发生至少有一个发生”“至多有一个发生至多有一个发生”“恰好有一个发生恰好有一个发生”等等.(3)复杂问题可考虑拆分为等价的几个事件的概率问复杂问题可考虑拆分为等价的几个事件的概率问题,同时结合对立事件的概率求法进行求解题,同时结合对立事件的概率求法进行求解.(4)求相
9、互独立事件同时发生的概率的方法主要有求相互独立事件同时发生的概率的方法主要有:利用相互独立事件的概率乘法公式利用相互独立事件的概率乘法公式;正面计算较繁或难以入手时,可以从对立事件入正面计算较繁或难以入手时,可以从对立事件入手计算手计算.返回目录返回目录 名师伴你行返回目录返回目录 2010年高考天津卷年高考天津卷某射手每次射击击中目标的概率某射手每次射击击中目标的概率是是23,且各次射击的结果互不影响,且各次射击的结果互不影响.(1)假设这名射手射击)假设这名射手射击5次,求恰有次,求恰有2次击中目标的概率;次击中目标的概率;(2)假设这名射手射击)假设这名射手射击5次,求有次,求有3次连续
10、击中目标,另次连续击中目标,另外外2次未击中目标的概率;次未击中目标的概率;(3)假设这名射手射击)假设这名射手射击3次,每次射击,击中目标得次,每次射击,击中目标得1分,分,未击中目标得未击中目标得0分分.在在3次射击中,若有次射击中,若有2次连续击中,而次连续击中,而另外另外1次未击中,则额外加次未击中,则额外加1分;若分;若3次全击中,则额外加次全击中,则额外加3分分.记记为射手射击为射手射击3次后的总得分数,求次后的总得分数,求的分布列的分布列.名师伴你行返回目录返回目录【解析解析】(1)设设X为射手在为射手在5次射击中击中目标的次数次射击中击中目标的次数,则则XB(5,).在在5次射
11、击中次射击中,恰有恰有2次击中目标的概率为次击中目标的概率为P(X=2)=.(2)设设“第第i次射击击中目标次射击击中目标”为事件为事件Ai(i=1,2,3,4,5);“射手在射手在5次射击中,有次射击中,有3次连续击中目标,另外次连续击中目标,另外2次未击中次未击中目标目标”为事件为事件A,则,则P(A)=P(A1A2A3A4A5)+P(A1A2A3A4A5)+P(A1A2A3A4A5)=()3()2+()3 +()2()3=.名师伴你行返回目录返回目录(3)设)设“第第i次射击击中目标次射击击中目标”为事件为事件Ai(i=1,2,3).由题意由题意可知,可知,的所有可能取值为的所有可能取值
12、为0,1,2,3,6.P(=0)=P(A1A2A3)=()3=;P(=1)=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=()2+()2 =;P(=2)=P(A1A2A3)=;P(=3)=P(A1A2A3)+P(A1A2A3)=()2 +()2=;P(=6)=P(A1A2A3)=()3=.所以所以的分布列是:的分布列是:名师伴你行返回目录返回目录 01236P名师伴你行返回目录返回目录 考点考点考点考点2 2 独立重复试验与二项分布独立重复试验与二项分布独立重复试验与二项分布独立重复试验与二项分布某单位某单位6个员工借助互联网开展工作,每个员工上网的个员工借助互联网开展工作,每个
13、员工上网的概率都是概率都是0.5(相互独立相互独立).(1)求至少求至少3人同时上网的概率人同时上网的概率;(2)至少几人同时上网的概率小于至少几人同时上网的概率小于0.3?【分析分析分析分析】因为因为6个员工上网都是相互独立的,所以个员工上网都是相互独立的,所以该题可归结为该题可归结为n次独立重复试验与二项分布问题次独立重复试验与二项分布问题.名师伴你行返回目录返回目录 【解析解析解析解析】(1)解法一:记)解法一:记“有有r人同时上网人同时上网”为事为事件件Ar,则则“至少至少3人同时上网人同时上网”即为事件即为事件A3+A4+A5+A6,因为,因为A3,A4,A5,A6为彼此互斥事件,所
14、以可应用概率为彼此互斥事件,所以可应用概率加法公式,得加法公式,得“至少至少3人同时上网人同时上网”的概率为的概率为 P=P(A3+A4+A5+A6)=P(A3)+P(A4)+P(A5)+P(A6)=()=(20+15+6+1)=.名师伴你行 解法二解法二:“至少至少3人同时上网人同时上网”的对立事件是的对立事件是“至多至多2人同时上网人同时上网”,即事件,即事件A0+A1+A2.因为因为A0,A1,A2是彼此互是彼此互斥的事件,所以斥的事件,所以“至少至少3人同时上网人同时上网”的概率为的概率为 P=1-P(A0+A1+A2)=1-P(A0)+P(A1)+P(A2)=1-()=1-(1+6+
15、15)=返回目录返回目录 名师伴你行 解法三解法三:至少:至少3人同时上网,这件事包括人同时上网,这件事包括3人,人,4人,人,5人或人或6人同时上网,则记至少人同时上网,则记至少3人同时上网的事件为人同时上网的事件为A,X为上网人数为上网人数,则则 P(A)=P(X3)=P(X=3)+P(X=4)+P(X=5)+P(X=6)返回目录返回目录 名师伴你行 (2)解法一解法一:记:记“至少至少r人同时上网人同时上网”为事件为事件Br,则则Br的概率的概率P(Br)随随r的增加而减少的增加而减少.依题意是求满足依题意是求满足P(Br)0.3的整数的整数r的最小值的最小值.因为因为 P(B6)=P(
16、A6)=0.3,P(B5)=P(A5+A6)=P(A5)+P(A6)=()=0.3,P(B4)=P(A4+A5+A6)=P(A4)+P(A5)+P(A6)=()=(15+6+1)=0.3,所以至少所以至少4人同时上网的概率大于人同时上网的概率大于0.3,至少至少5人同时人同时上网的概率小于上网的概率小于0.3.返回目录返回目录 名师伴你行 解法二解法二:由:由(1)知至少知至少3人同时上网的概率大于人同时上网的概率大于0.3,至少至少4人同时上网的概率为人同时上网的概率为 P(X4)=0.3,至少至少5人同时上网的概率为人同时上网的概率为 P(X5)=0.3,所以至少所以至少5人同时上网的概率
17、小于人同时上网的概率小于0.3.返回目录返回目录 名师伴你行 (1)独立重复试验是在同样的条件下重复地、各)独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验次之间相互独立地进行的一种试验.在这种试验中,每在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的发生,并且任何一次试验中发生的概率都是一样的.(2)在在n次独立重复试验中,设事件次独立重复试验中,设事件A发生的次数发生的次数为为X,在每次试验中事件,在每次试验中事件A发生的概率为发生的概率为p,那么在,那么在n次次独立
18、重复试验中,事件独立重复试验中,事件A恰好发生恰好发生k次的概率为次的概率为P(X=k)=(1-p)k,k=0,1,2,n.此时称随机变量此时称随机变量X服从二项分布,在利用该公式时,一定要搞清是多少服从二项分布,在利用该公式时,一定要搞清是多少次试验中发生次试验中发生k次的事件,如本题中次的事件,如本题中“有有3人上网人上网”可可理解为理解为6次独立重复试验恰有次独立重复试验恰有3次发生,即次发生,即n=6,k=3.返回目录返回目录 名师伴你行返回目录返回目录 2010年高考大纲全国卷年高考大纲全国卷如图,由如图,由M到到N的电路中有的电路中有4个元件,分别标为个元件,分别标为T1,T2,T
19、3,T4,电流能通过电流能通过T1,T2,T3的的概率都是概率都是p,电流能通过电流能通过T4的概率是的概率是0.9,电流能否通过各,电流能否通过各元件相互独立元件相互独立.已知已知T1,T2,T3中至少有一个能通过电流的中至少有一个能通过电流的概率为概率为0.999.(1)求)求p;(2)求电流能在)求电流能在M与与N之间通过的概率;之间通过的概率;(3)表示表示T1,T2,T3,T4中能通过电流的元件个数,求中能通过电流的元件个数,求的期望的期望.名师伴你行返回目录返回目录【解析解析】记记Ai表示事件:电流能通过表示事件:电流能通过Ti,i=1,2,3,4.A表示事件表示事件:T1,T2,
20、T3中至少有一个能通过电流中至少有一个能通过电流.B表示事件表示事件:电流能在电流能在M与与N之间通过之间通过.(1)A=A1A2A3,A1,A2,A3相互独立相互独立.故故P(A)=P(A1A2A3)=P(A1)P(A2)P(A3)=(1-p)3,又又P(A)=1-P(A)=1-0.999=0.001,故故(1-p)3=0.001,得得p=0.9.名师伴你行返回目录返回目录(2)B=A4+A4A1A3+A4A1A2A3,P(B)=P(A4+A4A1A3+A4A1A2A3)=P(A4)+P(A4A1A3)+P(A4A1A2A3)=P(A4)+P(A4)P(A1)P(A3)+P(A4)P(A1)
21、P(A2)P(A3)=0.9+0.10.90.9+0.10.10.90.9=0.989 1.(3)由于电流能通过各元件的概率都是由于电流能通过各元件的概率都是0.9,且电流能否,且电流能否通过各元件相互独立通过各元件相互独立,所以所以B(4,0.9),E()=40.9=3.6.名师伴你行返回目录返回目录 考点考点考点考点3 3 二项分布的随机变量的分布列二项分布的随机变量的分布列二项分布的随机变量的分布列二项分布的随机变量的分布列一名学生每天骑车上学,从他家到学校的途中有一名学生每天骑车上学,从他家到学校的途中有6个交个交通岗,假设他在各个交通岗遇到红灯的事件是相互独通岗,假设他在各个交通岗遇
22、到红灯的事件是相互独立的,并且概率都是立的,并且概率都是 .(1)设设X为这名学生在途中遇到红灯的次数,求为这名学生在途中遇到红灯的次数,求X的分布的分布 列列;(2)设设Y为这名学生在首次停车前经过的路口数,求为这名学生在首次停车前经过的路口数,求Y的的 分布列分布列;(3)求这名学生在途中至少遇到一次红灯的概率求这名学生在途中至少遇到一次红灯的概率.名师伴你行返回目录返回目录 【分析分析分析分析】本题主要考查独立重复试验的概率和二项本题主要考查独立重复试验的概率和二项分布等知识分布等知识.【解析解析解析解析】(1)将通过每个交通岗看作一次试验,)将通过每个交通岗看作一次试验,则遇到红灯的概
23、率为则遇到红灯的概率为 ,且每次试验结果是相互独立,且每次试验结果是相互独立的的,故故XB(6,),以此为基础求,以此为基础求X的分布列的分布列.由由XB(6,),所以,所以X的分布列为的分布列为 P(X=k)=,k=0,1,2,3,4,5,6.(2)由于)由于Y表示这名学生在首次停车时经过的路口表示这名学生在首次停车时经过的路口数,显然数,显然Y是随机变量,其取值为是随机变量,其取值为0,1,2,3,4,5.名师伴你行 其中其中:Y=k(k=0,1,2,3,4,5)表示前表示前k个路口没有个路口没有 遇上遇上 红灯,但在第红灯,但在第k+1个路口遇上红灯,故各概率应按个路口遇上红灯,故各概率
24、应按独立独立 事件同时发生计算事件同时发生计算.P(Y=k)=()k (k=0,1,2,3,4,5),而而Y=6表示一路没有遇上红灯表示一路没有遇上红灯,故其概率为故其概率为P(Y=6)=.因此因此Y的分布列为的分布列为:返回目录返回目录 Y0123456P名师伴你行(3)这名学生在途中至少遇到一次红灯的事件为这名学生在途中至少遇到一次红灯的事件为(X1)=X=1或或X=2或或或或X=6,所以其概率为所以其概率为P(X1)=P(X=k)=1-P(X=0)=1-()6=0.912.返回目录返回目录 名师伴你行 解决离散型随机变量分布列问题时,解决离散型随机变量分布列问题时,主要依靠概主要依靠概率
25、的有关概念和运算,其关键是要识别题中的离散型随率的有关概念和运算,其关键是要识别题中的离散型随机变量服从什么分布机变量服从什么分布.像本例中随机变量像本例中随机变量X表示遇到红灯表示遇到红灯次数,而每次遇到红灯是相互独立的,因此这是一个独次数,而每次遇到红灯是相互独立的,因此这是一个独立重复事件,符合二项分布,立重复事件,符合二项分布,即即XB(n,p).分布列能完分布列能完整地刻画随机变量整地刻画随机变量X与相应概率的变化情况,在分布列中与相应概率的变化情况,在分布列中第一行表示第一行表示X的所有可能取值,第二行对应的各个值(概的所有可能取值,第二行对应的各个值(概率值)必须都是非负实数且满
26、足其和为率值)必须都是非负实数且满足其和为1.返回目录返回目录 名师伴你行某一中学生心理咨询中心服务电话接通率为某一中学生心理咨询中心服务电话接通率为 ,某,某班班3名同学商定明天分别就同一问题询问该服务中心,且名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,求他们中成功咨询的人数每人只拨打一次,求他们中成功咨询的人数X的分布列的分布列.返回目录返回目录 名师伴你行由题意知由题意知XB(3,).P(X=k)=,k=0,1,2,3.分布列为分布列为:X0123P返回目录返回目录 名师伴你行返回目录返回目录 1.“1.“互斥事件互斥事件互斥事件互斥事件”与与与与“相互独立事件相互独立
27、事件相互独立事件相互独立事件”的区别的区别的区别的区别.它们是它们是它们是它们是两个不同的概念,相同点都是对两个事件而言的,不两个不同的概念,相同点都是对两个事件而言的,不两个不同的概念,相同点都是对两个事件而言的,不两个不同的概念,相同点都是对两个事件而言的,不同点是:同点是:同点是:同点是:“互斥事件互斥事件互斥事件互斥事件”是说两个事件不能同时发生,是说两个事件不能同时发生,是说两个事件不能同时发生,是说两个事件不能同时发生,“相互独立事件相互独立事件相互独立事件相互独立事件”是说一个事件发生与否与另一个事是说一个事件发生与否与另一个事是说一个事件发生与否与另一个事是说一个事件发生与否与
28、另一个事件发生的概率没有影响件发生的概率没有影响件发生的概率没有影响件发生的概率没有影响.这两个概念一定要搞清楚,区这两个概念一定要搞清楚,区这两个概念一定要搞清楚,区这两个概念一定要搞清楚,区分开分开分开分开.2.2.条件概率是在事件条件概率是在事件条件概率是在事件条件概率是在事件A A发生的条件下事件发生的条件下事件发生的条件下事件发生的条件下事件B B发生的发生的发生的发生的概率,解决此类问题一定要分清事件概率,解决此类问题一定要分清事件概率,解决此类问题一定要分清事件概率,解决此类问题一定要分清事件A A及事件及事件及事件及事件B B是什么,是什么,是什么,是什么,分清事件分清事件分清事件分清事件ABAB及事件及事件及事件及事件A A发生的概率是多少发生的概率是多少发生的概率是多少发生的概率是多少.名师伴你行