《黑龙江省2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案.doc》由会员分享,可在线阅读,更多相关《黑龙江省2023年教师资格之中学数学学科知识与教学能力押题练习试卷A卷附答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、黑龙江省黑龙江省 20232023 年教师资格之中学数学学科知识与教年教师资格之中学数学学科知识与教学能力押题练习试卷学能力押题练习试卷 A A 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、新课程标准将义务教育阶段的数学课程目标分为()。A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】B2、流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括A.液流系统B.光路系统C.
2、抗原抗体系统D.信号测量E.细胞分选【答案】C3、MBL 途径A.CPi-CH50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝集素E.B 因子【答案】D4、结肠癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】B5、红细胞形态偏小,中心淡染区扩大,受色浅淡,骨髓铁染色发现细胞内、外铁消失,为进一步确定贫血的病因,宜首选下列何项检查A.血清叶酸、维生素 BB.Ham 试验C.Coomb 试验D.铁代谢检查E.红细胞寿命测定【答案】D6、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】D7、患者发热,巨脾,白细胞 2
3、610A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】B8、特发性血小板减少性紫癜的原因主要是A.DICB.遗传性血小板功能异常C.抗血小板自身抗体D.血小板第 3 因子缺乏E.血小板生成减少【答案】C9、下列关于反证法的认识,错误的是().A.反证法是一种间接证明命题的方法B.反证法是逻辑依据之一是排中律C.反证法的逻辑依据之一是矛盾律D.反证法就是证明一个命题的逆否命题【答案】D10、“矩形”和“菱形”的概念关系是哪个()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B11、贫血患者,轻度黄疸,肝肋下 2cm。检验:血红蛋
4、白 70g/L,网织红细胞8%;血清铁 14.32mol/L(80g/dl),ALT 正常;Coombs 试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】D12、男性,65 岁,手脚麻木伴头晕 3 个月,并时常有鼻出血。体检:脾肋下30cm,肝肋下 15cm。检验:血红蛋白量 150gL,血小板数 110010A.凝血因子减少B.鼻黏膜炎症C.血小板功能异常D.鼻黏膜下血管畸形E.血小板数增多【答案】C13、()是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使
5、用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】B14、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常规结果为:血红蛋白量 113gL:白细胞数 810A.涂抹细胞B.异型淋巴细胞C.淋巴瘤细胞D.原始及幼稚淋巴细胞E.异常组织细胞【答案】B15、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】D16、设 a,b 为非零向量,下列命题正确的是()(易错)(1)ab 垂直于a;(2)
6、ab 垂直于 b;(3)ab 平行于 a;(4)ab 平行于 b。正确的个数是()A.0 个B.1 个C.3 个【答案】C17、正常细胞性贫血首选的检查指标是A.网织红细胞B.血红蛋白C.血细胞比容D.红细胞体积分布宽度E.骨髓细胞形态【答案】A18、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】B19、义务教育课程次标准(2011 年版)“四基”中“数学的基本思想”,主要是:数学抽象的思想;数学推理的思想;数学建模的思想。其中正确的是()。A.B.C.D.【答案】C20、下列关于椭圆的叙述:平面内到两个定点的距离之和等于
7、常数的动点轨迹是椭圆;平面内到定直线和直线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆;从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;平面与圆柱面的截面是椭圆。正确的个数是()A.0B.1C.2D.3【答案】C21、新课程标准对于运算能力的基本界定是()。A.正确而迅速的运算B.正确运算C.正确而灵活地运算D.迅速而灵活地运算【答案】B22、患者男性,60 岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞 3.610A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】C23、下列对向量学习意义的描述:A.1 条B.2 条C.3
8、 条D.4 条【答案】D24、中学数学的()是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。A.教学标准B.教学大纲C.教学策略D.教学模式【答案】D25、在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()A.1 个B.2 个C.3 个D.4 个【答案】C26、单核巨噬细胞的典型的表面标志是A.CD2B.CD3C.CD14D.CD16E.CD28【答案】C27、引起型超敏反应的变应原是A.组胺B.花粉C.Rh 血型抗原D.自身变性的 IgGE.油漆【答案】B28、成熟红细胞的异常形态与疾病的关
9、系,下列哪项不正确()A.点彩红细胞提示铅中毒B.棘形红细胞提示脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰形红细胞提示 HbF 增高E.红细胞缗钱状形成提示高纤维蛋白原血症【答案】D29、提出“一笔画定理”的数学家是()。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】C30、患者,女,25 岁。因咳嗽、发热 7 天就诊。查体 T37.8,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于 20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】C31、特种蛋白免疫分析仪是基于抗原-抗体反应原理,
10、不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。免疫浊度分析的必备试剂不包括A.多抗血清(R 型)B.高分子物质增浊剂C.20%聚乙二醇D.浑浊样品澄清剂E.校正品【答案】C32、下列划分正确的是()。A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】D33、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是()。A.|A|=|B|B.|A|B|C.若|A|=0,则-定有|B|=0D.若
11、|A|0,则-定有|B|0【答案】C34、下列选项中,运算结果一定是无理数的是()。A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差【答案】A35、已知随机变量 X 服从正态分布 X(,2),假设随机变量 Y=2X-3,Y 服从的分布是()A.N(2-3,22-3)B.N(2-3,42)C.N(2-3,42+9)D.N(2-3,42-9)【答案】B36、血液凝块的收缩是由于A.纤维蛋白收缩B.PF3 的作用C.红细胞的叠连D.血小板收缩蛋白收缩E.GPA/A 复合物【答案】D37、临床实验室定量分析测定结果的误差应该是A.愈小愈好B.先进设备C.室内质控
12、D.在允许误差内E.质控试剂【答案】D38、乙酰胆碱受体的自身抗体与上述有关的自身免疫病是A.慢性活动性肝炎B.抗磷脂综合征C.重症肌无力D.原发性小血管炎E.毒性弥漫性甲状腺肿(Gravesdisease)【答案】C39、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B40、血小板膜糖蛋白b 与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能【答案】A41、数学发展史上曾经发生过三次危机,触发第三次危机的事件是()。A.无理数的发现B.微积分的创立C.罗
13、素悖论D.数学命题的机器证明【答案】C42、Grave 病的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面 TSH 受体E.肾上腺皮质细胞【答案】D43、B 细胞识别抗原的受体是A.Fc 受体B.TCRC.SmIgD.小鼠红细胞受体E.C3b 受体【答案】C44、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、扁桃体【答案】A45、九章算数注的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A46、CD4A.50/lB.100/lC.200/lD.500/lE.1000/l
14、【答案】C47、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常规结果为:血红蛋白量 113gL:白细胞数 810A.慢性淋巴细胞白血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】B48、抛物线 C1:y=x2+1 与抛物线 C2 关于 x 轴对称,则抛物线 C2 的解析式为()。A.y=-x2B.y=-x2+1C.y=x2-1D.y=-x2-1【答案】D49、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应
15、E.型超敏反应【答案】D50、“矩形”和“菱形”的概念关系是哪个()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B大题(共大题(共 1010 题)题)一、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=4
16、8。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方
17、程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。二、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个
18、实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】本题主要考查对“数学化”的理解。三、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个
19、数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】四、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临
20、的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结
21、合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你
22、真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。五、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学
23、环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?
24、你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。六、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。七、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数
25、严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。八、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标
26、:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。九、以普通
27、高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集合主要内容的教学设计思路与方法。(12 分)【答案】一十、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探
28、究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教
29、师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。