《黑龙江省2023年教师资格之中学数学学科知识与教学能力押题练习试题A卷含答案.doc》由会员分享,可在线阅读,更多相关《黑龙江省2023年教师资格之中学数学学科知识与教学能力押题练习试题A卷含答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、黑龙江省黑龙江省 20232023 年教师资格之中学数学学科知识与教年教师资格之中学数学学科知识与教学能力押题练习试题学能力押题练习试题 A A 卷含答案卷含答案单选题(共单选题(共 5050 题)题)1、下列语句是命题的是()。A.B.C.D.【答案】D2、利用细胞代谢变化作为增殖指征来检测细胞因子生物活性的方法称为A.放射性核素掺入法B.NBT 法C.细胞毒测定D.MTT 比色法E.免疫化学法【答案】D3、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】D4、在现代免疫学中,免疫的概念是指A.排斥抗原性异
2、物B.清除自身突变、衰老细胞的功能C.识别并清除从外环境中侵入的病原生物D.识别和排斥抗原性异物的功能E.机体抗感染而不患病或传染疾病【答案】D5、型超敏反应A.由 IgE 抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T 细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】C6、义务教育课程次标准(2011 年版)“四基”中“数学的基本思想”,主要是:数学抽象的思想;数学推理的思想;数学建模的思想。其中正确的是()。A.B.C.D.【答案】C7、细胞介导免疫的效应细胞是A.TD 细胞B.Th 细胞C.Tc 细胞D.NK 细胞E.Ts 细胞【答案】C8、男性,65 岁,手脚
3、麻木伴头晕 3 个月,并时常有鼻出血。体检:脾肋下30cm,肝肋下 15cm。检验:血红蛋白量 150gL,血小板数 110010A.凝血因子减少B.鼻黏膜炎症C.血小板功能异常D.鼻黏膜下血管畸形E.血小板数增多【答案】C9、临床有出血症状且 APTT 和 PT 均正常可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】D10、内源凝血途径和外源凝血途径的主要区别在于A.启动方式和参与的凝血因子不同B.启动方式不同C.启动部位不同D.启动时间不同E.参与的凝血因子不同【答案】A11、义务教育课程次标准(2011 年版)“四基”中“数学的基本思想”,主要是:数学抽象的思想;数学推
4、理的思想;数学建模的思想。其中正确的是()。A.B.C.D.【答案】C12、纤溶酶的主要作用是水解()A.因子B.因子aC.因子D.因子和aE.因子【答案】D13、男性,29 岁,发热半个月。体检:两侧颈部淋巴结肿大(约 3cm4cm),肝肋下 2cm,脾肋下 25cm,胸骨压痛,CT 显示后腹膜淋巴结肿大。检验:血红蛋白量 85gL,白细胞数 3510A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传染性单核细胞增多症E.骨髓增生异常综合征【答案】C14、普通高中数学课程标准(2017 年版)指出高中数学课程分为哪几种课程?()A.必修课程、选修课程B.必修课程、选择性必修课程、选修课程C.
5、选修课程、选择性必修课程D.必修课程、选择性必修课程【答案】B15、AT-抗原测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】C16、属于型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】C17、设 A 为 n 阶矩阵,B 是经 A 若干次初等行变换得到的矩阵,则下列结论正确的是()A.|A|=|B|B.|A|B|C.若|A|=0,则一定有|B|=0D.若|A|0,则一定有|B|0【答案】C18、义务教育阶段的数学教育是()。A.基础教育B.筛选性教育C.精英公民教育D.公民教育【答案】
6、A19、函数 f(x)在a,b上黎曼可积的必要条件是 f(x)在a,b上()。A.可微B.连续C.不连续点个数有限D.有界【答案】D20、与意大利传教士利玛窦共同翻译了几何原本(卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A21、多发性骨髓瘤患者,血清中 M 蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA 型B.IgD 型C.轻链型D.不分泌型E.IgG 型【答案】B22、A.DIC,SLE,急性肾小球肾炎,急性胰腺炎B.慢性肾小球性疾病,肝病,炎性反应,自身免疫性疾病C.口服避孕药,恶性肿瘤,肝脏疾病
7、D.血友病,白血病,再生障碍性贫血E.DIC,慢性肾小球疾病,肝脏疾病,急性胰腺炎【答案】A23、男性,35 岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下 2cm,脾肋下 1cm,浅表淋巴结未及。血象:RBC23010A.铁粒幼细胞性贫血B.溶血性贫血C.巨幼细胞性贫血D.缺铁性贫血E.环形铁粒幼细胞增多的难治性贫血【答案】D24、下列哪种疾病做 PAS 染色时红系呈阳性反应A.再生障碍性贫血B.巨幼红细胞性贫血C.红白血病D.溶血性贫血E.巨幼细胞性贫血【答案】C25、外伤时,引起自身免疫性交感性眼炎A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细
8、胞异常增殖【答案】A26、使用口服抗凝剂时 PT 应维持在A.正常对照的 1.01.5 倍B.正常对照的 1.52.0 倍C.正常对照的 2.02.5 倍D.正常对照的 2.53.0 倍E.正常对照的 3 倍以上【答案】B27、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】D28、女,19 岁,反复发热、关节痛半月余,掌指、指及指间关节肿胀。免疫学检查 IgG 略有升高,RF880U/ml,抗环状瓜氨酸肽(抗 CCP 抗体
9、)阳性,此患者可诊断为A.多发性骨髓瘤B.系统性红斑狼疮C.干燥综合征D.类风湿关节炎E.皮肌炎【答案】D29、室间质控应在下列哪项基础上进一步实施A.愈小愈好B.先进设备C.室内质控D.在允许误差内E.质控试剂【答案】C30、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。影响免疫浊度分析的重要因素A.温育系统故障B.伪浊度C.边缘效应D.携带污染E.比色系统故障【答案】B31、抗原抗体检测A.CPi-CH50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝集素E.B 因子【答案】C32、细胞因子测定的首选方法是A.放
10、射性核素掺入法B.NBT 法C.ELISAD.MTT 比色法E.RIA【答案】C33、T 细胞阳性选择的主要目的是()A.选择出对自身抗原不发生免疫应答的细胞克隆B.选择掉对自身抗原发生免疫应答的细胞克隆C.实现自身免疫耐受D.实现对自身 MHC 分子的限制性E.实现 TCR 功能性成熟【答案】D34、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】D35、关于骨髓纤维化下列说法不正确的是A.脾大B.原发性骨髓纤维化,也可 Ph 染色体阳性C.末梢血可出现幼红/粒细胞。D.早期 WBC 增多E
11、.骨髓穿刺常见干抽【答案】B36、先天性无丙球蛋白血症综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】B37、男,45 岁,因骨盆骨折住院。X 线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占 25%,血沉 50mm/h,血红蛋白为 80g/L,尿本周蛋白阳性,血清蛋白电泳呈现 M 蛋白,血清免疫球蛋白含量 IgG8g/L、IgA12g/L、IgM0.2g/L。如进一步对该患者进行分型,则应为A.IgG 型B.IgA 型C.IgD 型D.IgE 型E.非分泌型【答案】B38、逻辑推理是得到数学结论、构建数
12、学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案】C39、疑似患有免疫增殖病的初诊应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】D40、正常人外周血经 PHA 刺激后,其 T 细胞转化率是A.1030B.7090C.5070D.6080E.3050【答案】D41、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】B42、男性,29 岁,发热半个月。体检:两侧颈部淋巴结肿大(约 3cm4cm),肝肋下 2cm,脾肋下 25cm,胸骨压痛,
13、CT 显示后腹膜淋巴结肿大。检验:血红蛋白量 85gL,白细胞数 3510A.期B.期C.期D.期E.期【答案】D43、函数 f(x)=2x+3x 的零点所在的一个区间是()A.(-2,-l)B.(-1,0)C.(0,1)D.(1,2)【答案】B44、贫血患者,轻度黄疸,肝肋下 2cm。检验:血红蛋白 70g/L,网织红细胞8%;血清铁 14.32mol/L(80g/dl),ALT 正常;Coombs 试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】D45、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩
14、阵,则下列结论正确的是()。A.|A|=|B|B.|A|B|C.若|A|=0,则-定有|B|=0D.若|A|0,则-定有|B|0【答案】C46、骨髓病态造血最常出现于下列哪种疾病A.缺铁性贫血B.再生障碍性贫血C.骨髓增生异常综合征D.传染性单核细胞增多症E.地中海贫血【答案】C47、下列哪一项不是溶血性贫血的共性改变()A.血红蛋白量减少B.网织红细胞绝对数减少C.红细胞寿命缩短D.尿中尿胆原增高E.血清游离血红蛋白升高【答案】B48、血液凝块的收缩是由于A.纤维蛋白收缩B.PF3 的作用C.红细胞的叠连D.血小板收缩蛋白收缩E.GPA/A 复合物【答案】D49、下列疾病在蔗糖溶血试验时可以
15、出现假阳性的是A.巨幼细胞性贫血B.多发性骨髓瘤C.白血病D.自身免疫性溶贫E.巨球蛋白血症【答案】C50、数学发展史上曾经发生过三次危机,触发第三次危机的事件是()。A.无理数的发现B.微积分的创立C.罗素悖论D.数学命题的机器证明【答案】C大题(共大题(共 1010 题)题)一、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1
16、)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。
17、二、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】三、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难
18、点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】四、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加
19、到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际
20、问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。五、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证
21、明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导
22、下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作
23、用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。六、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问
24、题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计的能力。七、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概
25、念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】本题主要考查对“数学化”的理解。八、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,
26、8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】九、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行
27、四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标
28、倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体
29、,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。一十、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原
30、则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。