新人教版八年级数学教案.doc

上传人:海*** 文档编号:75997612 上传时间:2023-03-06 格式:DOC 页数:8 大小:179KB
返回 下载 相关 举报
新人教版八年级数学教案.doc_第1页
第1页 / 共8页
新人教版八年级数学教案.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《新人教版八年级数学教案.doc》由会员分享,可在线阅读,更多相关《新人教版八年级数学教案.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2020新人教版八年级数学教案小学教案 汇报人:XXXXYour content to play here, or through your copy, paste in this box, and select only the text. Your content to play here, or through your copy, paste inthis box, and select only the text. 现时数学已包括多个分支。创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论,结构,就是以初始概念和公理出发的演绎系统。下面由我为大家

2、整理了关于新人教版八年级数学教案,供大家参考。 新人教版八年级数学教案1:多项式除以单项式 一、学习目标:1.多项式除以单项式的运算法则及其应用. 2.多项式除以单项式的运算算理. 二、重点难点: 重点: 多项式除以单项式的运算法则及其应用 难点: 探索多项式与单项式相除的运算法则的过程 三、合作学习: (一) 回顾单项式除以单项式法则 (二) 学生动手,探究新课 1. 计算下列各式: (1)(am+bm)m (2)(a2+ab)a (3)(4x2y+2xy2)2xy. 2. 提问:说说你是怎样计算的 还有什么发现吗? (三) 总结法则 1. 多项式除以单项式:先把这个多项式的每一项除以_,再

3、把所得的商_ 2. 本质:把多项式除以单项式转化成_ 四、精讲精练 例:(1)(12a3-6a2+3a)3a; (2)(21x4y3-35x3y2+7x2y2)(-7x2y); (3)(x+y)2-y(2x+y)-8x2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)(-2ab2) 随堂练习: 教科书 练习 五、小结 1、单项式的除法法则 2、应用单项式除法法则应注意: A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号 B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

4、C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行. E、多项式除以单项式法则 第三十四学时:14.2.1 平方差公式 一、学习目标:1.经历探索平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简单的运算. 二、重点难点 重点: 平方差公式的推导和应用 难点: 理解平方差公式的结构特征,灵活应用平方差公式. 三、合作学习 你能用简便方法计算下列各题吗? (1)20011999 (2)9981002 导入新课: 计算下列多项式的积. (1)(x+1)(x-1) (2)(m+2)(m-2) (

5、3)(2x+1)(2x-1) (4)(x+5y)(x-5y) 结论:两个数的和与这两个数的差的积,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2 四、精讲精练 例1:运用平方差公式计算: (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y) 例2:计算: (1)10298 (2)(y+2)(y-2)-(y-1)(y+5) 随堂练习 计算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+

6、b)(a2+b2) 五、小结:(a+b)(a-b)=a2-b2 第三十五学时:4.2.2. 完全平方公式(一) 一、学习目标:1.完全平方公式的推导及其应用. 2.完全平方公式的几何解释. 二、重点难点: 重点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用 难点: 理解完全平方公式的结构特征并能灵活应用公式进行计算 三、合作学习 .提出问题,创设情境 一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘, (1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去

7、了老人家,老人一共给了这些孩子多少块糖? (3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖? (4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么? .导入新课 计算下列各式,你能发现什么规律? (1)(p+1)2=(p+1)(p+1)=_;(2)(m+2)2=_; (3)(p-1)2=(p-1)(p-1)=_;(4)(m-2)2=_; (5)(a+b)2=_;(6)(a-b)2=_. 两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍. (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 四、精讲精练

8、 例1、应用完全平方公式计算: (1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2 例2、用完全平方公式计算: (1)1022 (2)992 新人教版八年级数学教案2:矩形 教学目标: 知识与技能目标: 1.掌握矩形的概念、性质和判别条件。 2.提高对矩形的性质和判别在实际生活中的应用能力。 过程与方法目标: 1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。 2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。 情感与态度目标: 1.在操作活动过程中,加深

9、对矩形的的认识,并以此激发学生的探索精神。 2.通过对矩形的探索学习,体会它的内在美和应用美。 教学重点:矩形的性质和常用判别方法的理解和掌握。 教学难点:矩形的性质和常用判别方法的综合应用。 教学方法:分析启发法 教具准备:像框,平行四边形框架教具,多媒体课件。 教学过程设计: 一、情境导入: 演示平行四边形活动框架,引入课题。 二、讲授新课: 1.归纳矩形的定义: 问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。) 结论:有一个内角是直角的平行四边形是矩形。 2.探究矩形的性质: (1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不

10、具备的性质?(学生思考、回答.) 结论:矩形的四个角都是直角。 (2)探索矩形对角线的性质: 让学生进行如下操作后,思考以下问题:(幻灯片展示) 在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状. 随着的变化,两条对角线的长度分别是怎样变化的? 当是锐角时,两条对角线的长度有什么关系?当是钝角时呢? 当是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系? (学生操作,思考、交流、归纳。) 结论:矩形的两条对角线相等. (3)议一议:(展示问题,引导学生讨论解决) 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的

11、理由. 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗? (4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”) 矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形. 例解:(性质的运用,渗透矩形对角线的“化归”功能) 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4 厘米,求BD与AD的长。 (引导学生分析、解答) 探索矩形的判别条件:(由修理桌子引出) (5)想一想:(学生讨论、交流、共同学习) 对角线相等的平行四边形是怎样的四边形?为什么? 结论:对角线相等的平行四边形是矩形. (理由可由师生共

12、同分析,然后用幻灯片展示完整过程.) (6)归纳矩形的判别方法:(引导学生归纳) 有一个内角是直角的平行四边形是矩形. 对角线相等的平行四边形是矩形. 三、课堂练习:(出示P98随堂练习题,学生思考、解答。) 四、新课小结: 通过本节课的学习,你有什么收获? (师生共同从知识与思想方法两方面小结。) 五、作业设计:P99习题4.6第1、2、3题。 板书设计: 1.矩形 矩形的定义: 矩形的性质: 前面知识的小系统图示: 2.矩形的判别条件: 例1 课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的

13、方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。 新人教版八年级数学教案3: 等腰三角形 教学目标 1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用. 教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点:等腰三角形三线合一的性质的理解及其应用. 教学过程 .提出问题,创设情境 在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.

14、来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是. 问题:那什么样的三角形是轴对称图形? 满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形. 我们这节课就来认识一种成轴对称图形的三角形等腰三角形. .导入新课: 要求学生通过自己的思考来做一个等腰三角形. 作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形. 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与

15、腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. 思考: 1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系? 3.顶角的平分线所在的直线是等腰三角形的对称轴吗? 4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线. 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. 沿等腰三角形的顶角的平分线

16、对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. 由此可以得到等腰三角形的性质: 1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”). 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). 如右图,在ABC中,AB=AC,作底边BC的中线AD,因为 所以BADCAD(SSS). 所以B=C. 如右图,在ABC中,AB=A

17、C,作顶角BAC的角平分线AD,因为 所以BADCAD. 所以BD=CD,BDA=CDA= BDC=90. 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:ABC各角的度数. 分析:根据等边对等角的性质,我们可以得到 A=ABD,ABC=C=BDC, 再由BDC=A+ABD,就可得到ABC=C=BDC=2A. 再由三角形内角和为180,就可求出ABC的三个内角. 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷. 解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC. A=ABD(等边对等角). 设A=x,则 BDC=A+ABD=2x, 从而

18、ABC=C=BDC=2x. 于是在ABC中,有 A+ABC+C=x+2x+2x=180, 解得x=36. 在ABC中,A=35,ABC=C=72. 师下面我们通过练习来巩固这节课所学的知识. .随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49P51,然后小结. .课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. .作业: 课本P56习题12.3第1、2、3、4题. 板书设计 12.3.1.1 等腰三角形 一、设计方案作出一个等腰三角形 二、等腰三角形性质: 1.等边对等角 2.三线合一 时间:XXXX2020感谢您的审阅8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁