《九年级数学上册第二十一章一元二次方程21.1一元二次方程导学案(新版)新人教版2987.pdf》由会员分享,可在线阅读,更多相关《九年级数学上册第二十一章一元二次方程21.1一元二次方程导学案(新版)新人教版2987.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第二十一章 一元二次方程 211 一元二次方程 1.了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题 2掌握一元二次方程的一般形式 ax2bxc0(a0)及有关概念 3会进行简单的一元二次方程的试解;理解方程解的概念 重点:一元二次方程的概念及其一般形式;一元二次方程解的探索 难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项 一、自学指导(10 分钟)问题 1:如图,有一块矩形铁皮,长 100 cm,宽 50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒 如果要制作的无盖方盒的底面积为 3600
2、cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为 x cm,则盒底的长为_(1002x)cm_,宽为_(502x)cm_列方程_(1002x)(502x)3600_,化简整理,得_x275x3500_ 问题 2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场根据场地和时间等条件,赛程计划安排 7 天,每天安排 4 场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为_4728_ 设应邀请 x 个队参赛,每个队要与其他_(x1)_个队各赛 1 场,所以全部比赛共x(x1)2_场列方程_x(x1)228_,化简整理,得_x2x560_ 探究:(1)方程中未知数的个
3、数各是多少?_1 个_(2)它们最高次数分别是几次?_2 次_ 归纳:方程的共同特点是:这些方程的两边都是_整式_,只含有_一个_未知数(一元),并且未知数的最高次数是_2_的方程 1一元二次方程的定义 等号两边都是_整式_,只含有_一_个未知数(一元),并且未知数的最高次数是_2_(二次)的方程,叫做一元二次方程 2一元二次方程的一般形式 一般地,任何一个关于 x 的一元二次方程,经过整理,都能化成如下形式:ax2bxc0(a0)这种形式叫做一元二次方程的一般形式其中_ax2_是二次项,_a_是二次项系数,_bx_是一次项,_b_是一次项系数,_c_是常数项 点拨精讲:二次项系数、一次项系数
4、、常数项都要包含它前面的符号二次项系数 a0是一个重要条件,不能漏掉 二、自学检测:学生自主完成,小组内展示,点评,教师巡视(6 分钟)1判断下列方程,哪些是一元二次方程?(1)x32x250;(2)x21;(3)5x22x14x22x35;(4)2(x1)23(x1);(5)x22xx21;(6)ax2bxc0.解:(2)(3)(4)点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程 2将方程 3x(x1)5(x2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项 解:去括号,得 3x23x5x10.移项,合并同类项,
5、得 3x28x100.其中二次项系数是 3,一次项系数是8,常数项是10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果(8 分钟)1求证:关于 x 的方程(m28m17)x22mx10,无论 m 取何值,该方程都是一元二次方程 证明:m28m17(m4)21,(m4)20,(m4)210,即(m4)210.无论 m 取何值,该方程都是一元二次方程 点拨精讲:要证明无论 m 取何值,该方程都是一元二次方程,只要证明 m28m170即可 2下面哪些数是方程 2x210 x120 的根?4,3,2,1,0
6、,1,2,3,4.解:将上面的这些数代入后,只有2 和3 满足等式,所以 x2 或 x3 是一元二次方程 2x210 x120 的两根 点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路(9 分钟)1判断下列方程是否为一元二次方程(1)1x20;(2)2(x21)3y;(3)2x23x10;(4)1x22x0;(5)(x3)2(x3)2;(6)9x254x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是 2若 x2 是方程 ax24x50 的一个根,求 a 的值 解:x2 是方程 ax24x50 的一个根,4a850,解得 a34.3根据下列问题,列出关于 x 的方程,并将其化成一元二次方程的一般形式:(1)4 个完全相同的正方形的面积之和是 25,求正方形的边长 x;(2)一个长方形的长比宽多 2,面积是 100,求长方形的长 x.解:(1)4x225,4x2250;(2)x(x2)100,x22x1000.学生总结本堂课的收获与困惑(2 分钟)1一元二次方程的概念以及怎样利用概念判断一元二次方程 2一元二次方程的一般形式 ax2bxc0(a0),特别强调 a0.3要会判断一个数是否是一元二次方程的根 学习至此,请使用本课时对应训练部分(10 分钟)