《2022秋九年级数学上册第二十一章一元二次方程21.1一元二次方程教案1新版新人教版.doc》由会员分享,可在线阅读,更多相关《2022秋九年级数学上册第二十一章一元二次方程21.1一元二次方程教案1新版新人教版.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、211 一元二次方程 教学目标1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式。2.会应用一元二次方程的解的定义解决有关问题。3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次的感性认识。 重难点关键 1重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题 2难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念 教学过程 一、复习引入 学生活动:列方程 问题1如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距
2、离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为_问题2如图,如果,那么点C叫做线段AB的黄金分割点 如果假设AB=1,AC=x,那么BC=_,根据题意,得:_ 整理得:_ 问题3有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是_,宽是_,根据题意,得:_ 整理,得:_老师点评并分析如何建立一元二次方程的数学模型,并整理 二、探索新知 学生活动1:请口答下面问题 1上面三个方程整理后含有几个未知数? 2按照整式中的多项式的规定,它们最高次数是
3、几次? 3有等号吗?或与以前多项式一样只有式子? 老师点评:1都只含一个未知数x;2它们的最高次数都是2次的;3都有等号,是方程 因此,像这样的方程两边都是整式,只含有一个未知数一元,并且未知数的最高次数是2二次的方程,叫做一元二次方程 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0a0这种形式叫做一元二次方程的一般形式一个一元二次方程经过整理化成ax2+bx+c=0a0后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项学生活动2 提问: 1问题1中一元二次方程的解是多少? 2如果抛开实际问题,问题1中还有其它解吗? 老师点评
4、:1问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解3如果抛开实际问题,问题1中还有x=-6的解 为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根 回过头来看:x2-36=0有两个根,一个是6,另一个是6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解 例1将方程8-2x5-2x=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项 分析:一元二次方程的一般形式是ax2+bx+c=0a0因
5、此,方程8-2x5-2x=18必须运用整式运算进行整理,包括去括号、移项等 解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0 其中二次项系数为4,一次项系数为-26,常数项为22 例21是关于x的一元二次方程m1x2x10的一个根,那么m的值是 A1 B1C0 D无法确定分析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到时一元二次方程,所以还要其二次项系数要不能等于0由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-20,m=-1应选B方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目的时候,我们一般是把这个根
6、代入方程左右两边转化为求待定系数的方程来解决问题。例3 如图是某月的日历表,在此日历表上可以用一个矩形圈出33个位置相邻的9个数如6,7,8,13,14,15,20,21,22假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为 A32 B126C135 D144分析:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x,那么最大数为x+16,根据题意,得xx+16=192,解得x1=8,x2=24不合题意舍去,故最小的三个数为8,9,10,下面一行的数字分别比上面三个数大7,即为15,16,17,第3行三个数,比上一行三个数分别大7,即为22,23,24,这9
7、个数的和为:8+9+10+15+16+17+22+23+24=144应选D方法总结:在日历表中,在同一列上相邻的两个数,下一列比上一列的一个数大7;在同一行上相邻的两个数,右边的比左边的一个数大1,是解决此类问题的依据 三、稳固练习 教材习题22.1练习1、2 四、应用拓展 例4求证:关于x的方程m2-8m+17x2+2mx+1=0,不管m取何值,该方程都是一元二次方程 分析:要证明不管m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可 证明:m2-8m+17=m-42+1 m-420 m-42+10,即m-42+10 不管m取何值,该方程都是一元二次方程 五、归纳小结学生总结,
8、老师点评 本节课要掌握: 1一元二次方程的概念;2一元二次方程的一般形式ax2+bx+c=0a0和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用 六、布置作业 1教材习题221 1、2 2选用作业设计 作业设计 一、选择题 1在以下方程中,一元二次方程的个数是 3x2+7=0 ax2+bx+c=0 x-2x+5=x2-1 3x2-=0 A1个 B2个 C3个 D4个 2方程2x2=3x-6化为一般形式后二次项系数、一次项系数和常数项分别为 A2,3,-6 B2,-3,18 C2,-3,6 D2,3,6 3px2-3x+p2-q=0是关于x的一元二次方程,那么 Ap=1 Bp
9、0 Cp0 Dp为任意实数 4x=-1是方程ax2+bx+c=0的根b0,那么= A1 B-1 C0 D2 二、填空题 5方程3x2-3=2x+1的二次项系数为_,一次项系数为_,常数项为_ 6一元二次方程的一般形式是_7关于x的方程a-1x2+3x=0是一元二次方程,那么a的取值范围是_ 8方程5x2+mx-6=0的一个根是x=3,那么m的值为_ 三、综合提高题9a满足什么条件时,关于x的方程ax2+x=x-x+1是一元二次方程?10 关于x的方程2m2+mxm+1+3x=6可能是一元二次方程吗?为什么? 11如果x=1是方程ax2+bx+3=0的一个根,求a-b2+4ab的值12如果关于x的一元二次方程ax2+bx+c=0a0中的二次项系数与常数项之和等 于一次项系数,求证:-1必是该方程的一个根 13一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的:设铁片的长为x,列出的方程为xx-3=1,整理得:x2-3x-1=0小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:x1234x2-3x-1-3-3 所以,_x_第二步: x3.13.23.33.4x2-3x-1-0.96-0.36 所以,_x_ 1请你帮小明填完空格,完成他未完成的局部; 2通过以上探索,估计出矩形铁片的整数局部为_,十分位为_