第三章相对论.ppt

上传人:得****1 文档编号:75407616 上传时间:2023-03-03 格式:PPT 页数:58 大小:1.75MB
返回 下载 相关 举报
第三章相对论.ppt_第1页
第1页 / 共58页
第三章相对论.ppt_第2页
第2页 / 共58页
点击查看更多>>
资源描述

《第三章相对论.ppt》由会员分享,可在线阅读,更多相关《第三章相对论.ppt(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、首首 页页 上上 页页 下下 页页 退退 出出 概概 述述 1919世纪末,物理学在各个领域里都取得了很大的成功:在世纪末,物理学在各个领域里都取得了很大的成功:在电磁学方面,建立了电磁学方面,建立了MaxweMaxwell方程;以及力、电、光、声方程;以及力、电、光、声.等都遵循的规律等都遵循的规律-能量转化与守恒定律能量转化与守恒定律.,.,当时许多当时许多物理学家认为物理学已经发展到头了。物理学家认为物理学已经发展到头了。正如正如19001900年英国物理学家开尔文在瞻望年英国物理学家开尔文在瞻望2020世纪物理学的世纪物理学的发展的文章中说到:发展的文章中说到:“在已经基本建成的科学大

2、厦中,在已经基本建成的科学大厦中,后辈的物理学家只要做一些零碎的修补工作后辈的物理学家只要做一些零碎的修补工作就行了。就行了。”1首首 页页 上上 页页 下下 页页 退退 出出然而开尔文又说道:然而开尔文又说道:“但是,在物理学晴朗天空的远处,但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,还有两朵令人不安的乌云,-”-”迈克尔逊迈克尔逊-莫雷实验莫雷实验热辐射实验热辐射实验后来的事实证明,正是这两朵乌云发展为一埸革命的风暴,乌后来的事实证明,正是这两朵乌云发展为一埸革命的风暴,乌云落地化为一埸春雨,浇灌着两朵鲜花云落地化为一埸春雨,浇灌着两朵鲜花。2首首 页页 上上 页页 下下 页页

3、退退 出出普朗克量子力学的诞生普朗克量子力学的诞生相对论问世相对论问世经典力学经典力学量子力学量子力学相对论相对论微观领域微观领域高速领域高速领域3首首 页页 上上 页页 下下 页页 退退 出出绝对时间绝对时间绝对空间绝对空间 绝对的、数学的、与物质的存在和运动无关绝对的、数学的、与物质的存在和运动无关在所有惯性系中,物体运动所遵循的力学规律是相同的,在所有惯性系中,物体运动所遵循的力学规律是相同的,具有相同的数学表达形式具有相同的数学表达形式。或者说,对于描述力学现象的或者说,对于描述力学现象的规律而言,所有惯性系是等价的。规律而言,所有惯性系是等价的。3.1 伽利略变换和经典力学时空观伽利

4、略变换和经典力学时空观一一.绝对时空观绝对时空观二二.经典力学的相对性原理经典力学的相对性原理l 经典力学相对性原理与绝对时空观密切相关经典力学相对性原理与绝对时空观密切相关 4首首 页页 上上 页页 下下 页页 退退 出出三三.伽利略变换伽利略变换正变换正变换逆变换逆变换伽利伽利略变略变换式换式在两个惯性系中分析描述同一物理事件在两个惯性系中分析描述同一物理事件在在 t 0 时刻,物体在时刻,物体在 O 点点,S,S 系重合。系重合。t 时刻,物体到时刻,物体到达达 P 点点P(x,y,z;t)(x,y,z;t)yOzSx(x)OzyS5首首 页页 上上 页页 下下 页页 退退 出出 1 1

5、0 0 时间间隔与参照系的运动无关,即时间间隔与参照系的运动无关,即 同时性是绝对的同时性是绝对的,即在某惯性系同时发生的事件(无论是否即在某惯性系同时发生的事件(无论是否 在同一地点),在另一惯性系中也认为是同时的。在同一地点),在另一惯性系中也认为是同时的。2 20 0 空间间隔与参照系的运动无关,即空间间隔与参照系的运动无关,即空间间隔是绝对的空间间隔是绝对的讨论讨论6首首 页页 上上 页页 下下 页页 退退 出出u 是恒量是恒量速度变换和加速度变换式为速度变换和加速度变换式为由定义由定义并注意到并注意到写成分量式写成分量式7首首 页页 上上 页页 下下 页页 退退 出出在牛顿力学中在牛

6、顿力学中四四.牛顿运动定律具有伽利略变换的不变性牛顿运动定律具有伽利略变换的不变性 质量与运动无关质量与运动无关 力与参考系无关力与参考系无关8首首 页页 上上 页页 下下 页页 退退 出出迈克耳逊迈克耳逊-莫雷实验莫雷实验对对(1)光线:光线:O M1 O3.2 狭义相对论的两个基本假设狭义相对论的两个基本假设一一.伽利略变换的困难伽利略变换的困难l Maxwell 电磁场方程组不服从伽利略变换电磁场方程组不服从伽利略变换l 迈克耳逊迈克耳逊-莫雷实验的莫雷实验的零零结果结果以太风以太风(1)(2)9首首 页页 上上 页页 下下 页页 退退 出出对对(2)光线:光线:O M2 O由由 l1=

7、l2=l 和和 v c两束两束光线光线的时间差的时间差当仪器转动当仪器转动 /2 后,引起干涉条纹移动后,引起干涉条纹移动实验结果实验结果:10首首 页页 上上 页页 下下 页页 退退 出出1905年,年,A.Einstein 首次提出了狭义相对论的两个假设首次提出了狭义相对论的两个假设2.光速不变原理光速不变原理在所有的惯性系中,光在真空中的传播速率具有相同的值在所有的惯性系中,光在真空中的传播速率具有相同的值包括两个意思:包括两个意思:l 光速不随观察者的运动而变化光速不随观察者的运动而变化 l 光速不随光源的运动而变化光速不随光源的运动而变化 二二.狭义相对论的两个基本假设狭义相对论的两

8、个基本假设1.相对性原理相对性原理一切物理规律在所有惯性系中具有相同的形式一切物理规律在所有惯性系中具有相同的形式11首首 页页 上上 页页 下下 页页 退退 出出 在牛顿力学中,在牛顿力学中,与参考系无关与参考系无关 在狭义相对论力学中,与参考系有关在狭义相对论力学中,与参考系有关(1)Einstein 相对性原理相对性原理 是是 Newton力学相对性原理的力学相对性原理的发展发展讨论讨论(2)光速不变原理与伽利略的速度合成定理光速不变原理与伽利略的速度合成定理针锋相对针锋相对(3)时间和长度等的测量时间和长度等的测量12首首 页页 上上 页页 下下 页页 退退 出出S SccM AB3.

9、3 狭义相对论的时空观狭义相对论的时空观以一个假想火车为例以一个假想火车为例一一.同时性的相对性同时性的相对性假想假想火车(爱因斯坦火车)火车(爱因斯坦火车)地面参考系地面参考系A、B 处分别放置一光信号接收器处分别放置一光信号接收器中点中点 M 处放置一光信号发生器处放置一光信号发生器t=t=0 时时,M 发出一光信号发出一光信号A、B 同时接收到光信号同时接收到光信号1、2 两事件同时发生两事件同时发生事件事件1:A 接收到光信号接收到光信号事件事件2:B 接收到光信号接收到光信号(车上放置一套装置车上放置一套装置)13首首 页页 上上 页页 下下 页页 退退 出出SSccccSSAMBM

10、闪光发生在闪光发生在M 处处光速仍为光速仍为 c而这时,而这时,A、B 处的处的接收器随接收器随 S 运动。运动。A 比比 B 早接收到光信号早接收到光信号1事件先于事件先于2 事件发生事件发生事件事件 1 发生发生事件事件 2 发生发生SccSMA14首首 页页 上上 页页 下下 页页 退退 出出(2)同时性的相对性是光速不变原理的直接结果。同时性的相对性是光速不变原理的直接结果。(1)同时性是相对的。同时性是相对的。沿两个惯性系相对运动方向上发生的两个事件,在其中一沿两个惯性系相对运动方向上发生的两个事件,在其中一个惯性系中表现为同时的,在另一个惯性系中观察,则总个惯性系中表现为同时的,在

11、另一个惯性系中观察,则总是在前一个惯性系运动的后方的那一事件先发生。是在前一个惯性系运动的后方的那一事件先发生。结论结论讨论讨论15首首 页页 上上 页页 下下 页页 退退 出出二二.时间延缓时间延缓研究的问题是研究的问题是O 处的闪光光源处的闪光光源发出一光信号发出一光信号事件事件1事件事件2O 处的接收器接处的接收器接收到该光信号收到该光信号在在S、S 系中,系中,两事件发生的时间间隔之间的关系两事件发生的时间间隔之间的关系 在在S 系的系的 O 处放置一闪光光源和一信号接收器,在竖直处放置一闪光光源和一信号接收器,在竖直方向距离方向距离 O 点点 h 的位置处放置一平面反射镜的位置处放置

12、一平面反射镜 MS O MSO16首首 页页 上上 页页 下下 页页 退退 出出设设 t=t =0 时刻,时刻,O 处的闪光光源发出一光信号处的闪光光源发出一光信号S O MS O MS O MOSSOS O M17首首 页页 上上 页页 下下 页页 退退 出出记:记:原时原时:在某惯性系中,同一地点先后发生的两个事件在某惯性系中,同一地点先后发生的两个事件之间的时间间隔之间的时间间隔18首首 页页 上上 页页 下下 页页 退退 出出l在不同惯性系中测量给定两事件之间的时间间隔,测在不同惯性系中测量给定两事件之间的时间间隔,测得的结果以原时最短。得的结果以原时最短。l 运动的时钟走的速率比静止

13、时钟走的速率要慢。运动的时钟走的速率比静止时钟走的速率要慢。(3)时间延缓效应是相对的。时间延缓效应是相对的。讨论讨论(1)时间延缓效时间延缓效应应(2)运动时钟变慢效应是时间本身的客观特征。运动时钟变慢效应是时间本身的客观特征。(4)时间延缓效应显著与否决定于时间延缓效应显著与否决定于 因子。因子。(5)当当u c 时,时,19首首 页页 上上 页页 下下 页页 退退 出出例例3.13.1-介子是一种不稳定的粒子,从它产生到它衰变介子是一种不稳定的粒子,从它产生到它衰变为为 -介子经历的时间即为它的寿命,已测得静介子经历的时间即为它的寿命,已测得静止止-介子的平均寿命介子的平均寿命 0=2

14、10-8s.某加速器产某加速器产生的生的-介子以速率介子以速率 u=0.98 c 相对实验室运动。相对实验室运动。求求-介子衰变前在实验室中通过的平均距离。介子衰变前在实验室中通过的平均距离。解解 对实验室中的观察者来说,运动的对实验室中的观察者来说,运动的-介子的寿命介子的寿命 为为因此,因此,-介子衰变前在实验室中通过的距离介子衰变前在实验室中通过的距离 d 为为20首首 页页 上上 页页 下下 页页 退退 出出三三.长度收缩长度收缩1.运动长度的测量运动长度的测量 OSOS21首首 页页 上上 页页 下下 页页 退退 出出由由2.长度收缩长度收缩两事件同地发生两事件同地发生,t 为原时为

15、原时原长原长:相对于棒静止的惯性系测相对于棒静止的惯性系测得棒的长度得棒的长度22首首 页页 上上 页页 下下 页页 退退 出出(1)长度收缩效应长度收缩效应l 在不同惯性系中测量同一尺长,以原长为最长。在不同惯性系中测量同一尺长,以原长为最长。(4)长度收缩长度收缩效应显著与否决定于效应显著与否决定于 因子。因子。讨论讨论(2)长度收缩只发生在运动的方向上。长度收缩只发生在运动的方向上。(5)当当u c 时,时,(3)长度收缩效应是相对的。长度收缩效应是相对的。23首首 页页 上上 页页 下下 页页 退退 出出解:解:例例3.2 一长为一长为1 m的棒,相对于的棒,相对于S系静止并与系静止并

16、与 x轴夹轴夹角角=45。问:在。问:在S系的观察者来看,此棒的长度以系的观察者来看,此棒的长度以及它与及它与x 轴的夹角为多少?(已知轴的夹角为多少?(已知 )S SS S24首首 页页 上上 页页 下下 页页 退退 出出3.4 洛伦兹变换洛伦兹变换由由S S系系(正变换)(正变换)由由SS系(逆变换)系(逆变换)一、一、洛仑兹变换洛仑兹变换25首首 页页 上上 页页 下下 页页 退退 出出二、二、洛仑兹变换的意义洛仑兹变换的意义 1 1、L变换是爱因斯坦狭义相对论时空观的数学表达式。变换是爱因斯坦狭义相对论时空观的数学表达式。2 2、L变换说明了,时空是物质的一种基本属性。变换说明了,时空

17、是物质的一种基本属性。时、空不再分离,而是统一的整体,与物质的运动相关。时、空不再分离,而是统一的整体,与物质的运动相关。在相对论的时、空观中,不存在空无一物的时、空点。在在相对论的时、空观中,不存在空无一物的时、空点。在统一四维时空中的一个时、空点对应着一个具体的事件。统一四维时空中的一个时、空点对应着一个具体的事件。3 3、物质运动的极限速度为真空中的光速度、物质运动的极限速度为真空中的光速度 c c。26首首 页页 上上 页页 下下 页页 退退 出出 4 4、L变换是比变换是比G变换更具普遍意义的变换。变换更具普遍意义的变换。当uC时 当当uc时,时,L变换确实回到变换确实回到G变换。变

18、换。27首首 页页 上上 页页 下下 页页 退退 出出 三、洛仑兹速度变换三、洛仑兹速度变换 对其求微分,得对其求微分,得 伽里略变换为伽里略变换为 ,其不能保证光速不变,而洛,其不能保证光速不变,而洛仑兹速度变换则可以保证光速不变。仑兹速度变换则可以保证光速不变。28首首 页页 上上 页页 下下 页页 退退 出出29首首 页页 上上 页页 下下 页页 退退 出出 由由 S SS S系系 由由 SSSS系系 与与G G变换不同处,在变换不同处,在L L变换中,变换中,x x方向的运动对方向的运动对y y,z z方向的运动方向的运动有影响,而有影响,而G G变换中不存在这个问题。变换中不存在这个

19、问题。30首首 页页 上上 页页 下下 页页 退退 出出 L L速度变换能保证光速不变速度变换能保证光速不变?设设 S S系的系的A A质点就是光子,且其沿质点就是光子,且其沿x x轴运动,即轴运动,即 即在即在S S系测得系测得A A光子的速度也是光子的速度也是C C。由由L L变换,得变换,得若光子沿若光子沿y y轴运动,在轴运动,在S S系中其合速度依然为系中其合速度依然为C C31首首 页页 上上 页页 下下 页页 退退 出出 但这时光子运动方向不是沿但这时光子运动方向不是沿y y轴,而是与轴,而是与y y轴成轴成角,且角,且32首首 页页 上上 页页 下下 页页 退退 出出四、由洛仑

20、兹变换证明相对论时空观:四、由洛仑兹变换证明相对论时空观:若若x xA A=x xB B,则,则t tA A=t tB B 即在某惯性系中即在某惯性系中同一地点同时同一地点同时发生发生事件,在其他惯性系测量,也是同时发生的;事件,在其他惯性系测量,也是同时发生的;若若x xA A x xB B,则则t tA A t tB B ,即在某惯性系即在某惯性系不同地点同时不同地点同时发生的发生的事件,在其他惯性系中测量就不是同时发生的。事件,在其他惯性系中测量就不是同时发生的。同时性的相对性同时性的相对性33首首 页页 上上 页页 下下 页页 退退 出出时间延缓时间延缓SOS O M根据洛仑兹变换根据

21、洛仑兹变换34首首 页页 上上 页页 下下 页页 退退 出出长度收缩长度收缩静置于静置于S S系中的直棒系中的直棒OSOS由洛仑兹变换有由洛仑兹变换有 因因S S系的观察者测量时,系的观察者测量时,必须有必须有 t t1 1=t=t2 2,测量才有意义,故测量才有意义,故35首首 页页 上上 页页 下下 页页 退退 出出例例3.33.3(1 1)火箭)火箭A A和和B B分别以分别以0.8c0.8c和和0.6c0.6c的速度相对于地球向的速度相对于地球向X X方向和方向和X X方向飞行。试求由火箭方向飞行。试求由火箭B B测得测得A A的速度。(的速度。(2 2)若火箭若火箭A A相对于地球以

22、相对于地球以0.8c0.8c的的速度向速度向Y Y方向飞行,火箭方向飞行,火箭B B的的速度不变,求速度不变,求A A相对相对B B的速度。的速度。解:如右图,取地球为解:如右图,取地球为S S系,系,B B为为S S/系,则系,则S S/系(即火箭系(即火箭B B)相对于相对于S S系系(即地球)的速度(即地球)的速度u=-0.6c,u=-0.6c,火箭火箭A A相对相对S S系的速度系的速度v vx x=0.8c,=0.8c,则则A A相对相对S S/系(系(B B)的速度为的速度为(S/系)系)0.8c0.6cx地球地球AB(S系系36首首 页页 上上 页页 下下 页页 退退 出出或者取

23、或者取A A为为S S/系,则系,则u=0.8c,Bu=0.8c,B相对相对S S系速度系速度v vx x=-0.6c,=-0.6c,于是于是B B相对相对A A的速度为的速度为(2 2)如左图,取地球为)如左图,取地球为S S系,系,B B为为S S/系,则系,则S S/系(即火箭系(即火箭B B)相对于相对于S S系(即地球)的速度系(即地球)的速度u=-0.6c,u=-0.6c,火箭火箭A A相对相对S S系的速度为系的速度为v vx x=0,=0,v vy y=0.8c,=0.8c,AB则则A A相对相对B B的速度为的速度为(S系)系)x地球地球0.8c0.6c(S/系)系)37首首

24、 页页 上上 页页 下下 页页 退退 出出即即A A相对相对B B的速度大小为的速度大小为速度与速度与X X/轴的夹角为轴的夹角为38首首 页页 上上 页页 下下 页页 退退 出出A球静止于球静止于 ,设两全同小球,静止质量设两全同小球,静止质量B球静止于球静止于B BA AA AB B完全非弹性碰撞完全非弹性碰撞3.5.1 3.5.1 动量、质量与速度的关系动量、质量与速度的关系3.5 3.5 狭义相对论动力学狭义相对论动力学质量守恒:质量守恒:M=M=m+m039首首 页页 上上 页页 下下 页页 退退 出出系动量守恒:系动量守恒:由速度变换式:由速度变换式:S S系动量守恒:系动量守恒:

25、40首首 页页 上上 页页 下下 页页 退退 出出质速关系式:质速关系式:41首首 页页 上上 页页 下下 页页 退退 出出m0称为称为静止质量静止质量 质速关系反映了物质与运动的不可分割性质速关系反映了物质与运动的不可分割性相对论性动量:相对论性动量:42首首 页页 上上 页页 下下 页页 退退 出出 19011901年(相对论出现以前),考夫曼在研究年(相对论出现以前),考夫曼在研究 射线(电子射线(电子束)的荷质比束)的荷质比 e/m e/m 的实验中发现荷质比与电子的速度有关,的实验中发现荷质比与电子的速度有关,他认为电子的电荷他认为电子的电荷e e不会不会因速度变化而变化,后来的因速

26、度变化而变化,后来的实验也表明,电荷确与速度实验也表明,电荷确与速度无关,于是发现了电子的质无关,于是发现了电子的质量是随速度增加而增加的。量是随速度增加而增加的。布赛勒于布赛勒于19091909年(相对年(相对论建立之后),重新测量论建立之后),重新测量 射线的荷质比,其结果与射线的荷质比,其结果与相对论的质速关系吻合。相对论的质速关系吻合。m/m012340.20.41.000.60.8u/c43首首 页页 上上 页页 下下 页页 退退 出出2 2、从动力学角度亦可定性地说明物质运动速度的极限为、从动力学角度亦可定性地说明物质运动速度的极限为C C1 1、其说明作为物质属性的质量与物体的运

27、动状态有关、其说明作为物质属性的质量与物体的运动状态有关 联系前节内容可知,凡属物质属性的:联系前节内容可知,凡属物质属性的:时间、空间、质量时间、空间、质量都都与物质的运动状态有关,而物质的运动状态又与参照系的选择有与物质的运动状态有关,而物质的运动状态又与参照系的选择有关,故知这些特性均是相对的。关,故知这些特性均是相对的。3 3、在相对论中,、在相对论中,牛顿定律为牛顿定律为 4 4、光子的静止质量为零、光子的静止质量为零 进一步的理论指出:还有信号传播的速度、作用传递的速进一步的理论指出:还有信号传播的速度、作用传递的速度不能超光速。度不能超光速。欲使光子的质量有意义,就必须认为光子的

28、静止质量为零。欲使光子的质量有意义,就必须认为光子的静止质量为零。44首首 页页 上上 页页 下下 页页 退退 出出3.5.2 3.5.2 质量和能量的关系质量和能量的关系 设有一质点在设有一质点在S S系沿系沿X X轴运动,其速度为轴运动,其速度为u,则由动能定理有则由动能定理有45首首 页页 上上 页页 下下 页页 退退 出出46首首 页页 上上 页页 下下 页页 退退 出出由于由于u=0时,时,dEk=0,m=m0 相对论动能:相对论动能:相对论总能量:相对论总能量:相对论静能:相对论静能:结论:结论:如果一个物体的质量如果一个物体的质量 m 发生变化,必然伴随着它的发生变化,必然伴随着

29、它的能量能量 E 发生相应的变化。发生相应的变化。质量质量“亏损亏损”:E mc2 原子能的利用原子能的利用 当重核裂变或轻核聚合时,会发生质量当重核裂变或轻核聚合时,会发生质量“亏损亏损”,“亏亏损损”的质量以场物质的形式辐射出去了,场物质是释放出去的质量以场物质的形式辐射出去了,场物质是释放出去的能量的携带者。的能量的携带者。47首首 页页 上上 页页 下下 页页 退退 出出讨论动能:讨论动能:讨论动能:讨论动能:时cv48首首 页页 上上 页页 下下 页页 退退 出出例例3.4 在一种热核反应中,反应式为在一种热核反应中,反应式为 其中各粒子的静质量分别为:其中各粒子的静质量分别为:氘氘

30、核(核():):氦核(氦核():):中子(中子():):氚氚核(核():):求这一热核反应所释放出的能量。求这一热核反应所释放出的能量。49首首 页页 上上 页页 下下 页页 退退 出出解:解:在这反应过程中,反应前、后质量变化为在这反应过程中,反应前、后质量变化为 释放出相应的能量:释放出相应的能量:1kg 这种燃料所释放出的能量:这种燃料所释放出的能量:50首首 页页 上上 页页 下下 页页 退退 出出3.5.3 3.5.3 动量和能量的关系动量和能量的关系 此即相对论中动量与能量的关系此即相对论中动量与能量的关系静静质质量量 的粒子的粒子 51首首 页页 上上 页页 下下 页页 退退 出

31、出例例3.5 一个电子被电压为一个电子被电压为106 V的电场加速后,其质的电场加速后,其质量为多少?速率为多大?量为多少?速率为多大?解:解:52首首 页页 上上 页页 下下 页页 退退 出出练习练习3.13.1 有一速度为的宇宙飞船沿轴正方向飞行,飞船头有一速度为的宇宙飞船沿轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为发出的光脉冲的传播速度大小为_;处于船头的观察者处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为测得船尾光源发出的光脉冲的传播速度大小为_。填:填:C_ C

32、_C_ C_53首首 页页 上上 页页 下下 页页 退退 出出练习练习3.23.2 两个惯性系与两个惯性系与/坐标轴相互平行,坐标轴相互平行,/系相对于系相对于系沿轴作匀速运动,在系沿轴作匀速运动,在/系的系的/轴上,相距为轴上,相距为/的的/、/两点处各放一只已经彼此对准了的钟,试问在系中的观测两点处各放一只已经彼此对准了的钟,试问在系中的观测者看这两只钟是否也是对准了?为什么?者看这两只钟是否也是对准了?为什么?答:答:没对准没对准。根据相对论同时性,如题所述在根据相对论同时性,如题所述在/系中同时发生,但系中同时发生,但不同地点(不同地点(/坐标不同)的两事件(即坐标不同)的两事件(即/

33、处的钟和处的钟和/处的处的钟有相同示数),在系中观测并不同时;因此,在系中钟有相同示数),在系中观测并不同时;因此,在系中某一时刻同时观测,这两个钟的示数必不相同。某一时刻同时观测,这两个钟的示数必不相同。54首首 页页 上上 页页 下下 页页 退退 出出练习练习3.33.3 关于同时性有人提出以下一些结论,其中哪个是正关于同时性有人提出以下一些结论,其中哪个是正确的?确的?()在一惯性系同时发生的两个事件,在另一惯性系一定()在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生。不同时发生。()在一惯性系不同地点同时发生的两个事件,在另一惯()在一惯性系不同地点同时发生的两个事件,在另一

34、惯性系一定同时发生。性系一定同时发生。()在一惯性系同一地点同时发生的两个事件,在另一惯()在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生。性系一定同时发生。()在一惯性系不同地点不同时发生的两个事件,在另一()在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生。惯性系一定不同时发生。答:选答:选 C C55首首 页页 上上 页页 下下 页页 退退 出出 因果律事件因果律事件因果律事件间的时序不会颠倒因果律事件间的时序不会颠倒56首首 页页 上上 页页 下下 页页 退退 出出练习练习3.43.4 一宇航员要到离地球为光年的星球去旅行,如果宇一宇航员要到离地球为光

35、年的星球去旅行,如果宇航员希望把这路程缩短为光年,则他所乘的火箭相对于地球航员希望把这路程缩短为光年,则他所乘的火箭相对于地球的速度应是;的速度应是;解:此处本征长度解:此处本征长度L L0 0=5=5光年,光年,“动尺动尺”长度是长度是L=3L=3光年光年57首首 页页 上上 页页 下下 页页 退退 出出练习练习3.53.5 一艘宇宙飞船的船身固有长度为一艘宇宙飞船的船身固有长度为09090,相对于地面,相对于地面以以 v 0.8(为真空中光速)的匀速度在一观测站的上空飞(为真空中光速)的匀速度在一观测站的上空飞过。过。()观测站测得飞船的船身通过观测站的时间间隔是多少?()观测站测得飞船的船身通过观测站的时间间隔是多少?()宇航员测得船身通过观测站的时间间隔是多少?()宇航员测得船身通过观测站的时间间隔是多少?解:()观测站测得飞船船身的长度为解:()观测站测得飞船船身的长度为则则 1v2.25102.25107 7 ()宇航员测得飞船船身的长度为)宇航员测得飞船船身的长度为0 0 ,则则 2v3.75103.75107 7 58

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁