《八年级数学上册教案【优秀4篇】.docx》由会员分享,可在线阅读,更多相关《八年级数学上册教案【优秀4篇】.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学上册教案【优秀4篇】作为一名人民教师,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?虎知道为朋友们整理了4篇八年级数学上册教案,希望能对您的写作有一定的参考作用。人教版八年级数学上册教案 篇一 一、创设情景,明确目标 多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。 二、自主学习,指向目标 学习至此:请完成学生用书相应部分。 三、合作探究,达成目标 多边形的定义及有关概念 活动一:阅读教材P19。 展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角? 小组讨论:结合具体图形说出
2、多边形的边、内角、外角? 反思小结:多边形的定义及相关概念。 针对训练:见学生用书相应部分 多边形的对角线 活动二:(1)十边形的对角线有35条。 (2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。 展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n3)是什么意思?为什么要除以2? 反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。 小组讨论:如何灵活运用多边形对角线条数的规
3、律解题? 针对训练:见学生用书相应部分 正多边形的有关概念 活动二:阅读教材P20。 展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么? 小组讨论:判断一个多边形是否是正多边形的条件? 反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。 针对训练:见学生用书相应部分 四、总结梳理,内化目标 本节学习的数学知识是: 1、多边形、多边形的外角,多边形的对角线。 2、凸凹多边形的概念。 五、达标检测,反思目标 1、下列叙述正确的是(D) A、每条边都相等的多边形是正多边形 B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线
4、的同一侧,那么它一定是凸多边形 C、每个角都相等的多边形叫正多边形 D、每条边、每个角都相等的多边形叫正多边形 2、小学学过的下列图形中不可能是正多边形的是(D) A、三角形B。正方形C。四边形D。梯形 3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。 4、已知一个四边形的四个内角的比为1234,求这个四边形的各个内角的度数。 人教版八年级数学上册的教学计划 篇二 一、制定计划的目的 为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培
5、养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划。 二、教材内容分析 本学期数学教材内容包括:第一章生活中的轴对称、第二章勾股定理、第三章实数,第四章概率的初步认识,第五章平面直角坐标系,第六章一次函数, 第七章二元一次方程组。 第一章生活中的轴对称的主要内容是研究轴对称图形的性质及其应用。其重点是轴对称图形的性质。 第二章勾股定理的主要内容是:勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。 第三章实数主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本
6、章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。 第四章概率的初步认识主要内容是通过可能性的大小认识概率,并进行简单的概率计算。概率计算是本章教学的重点。 第五章平面直角坐标系主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。 第六章一次函数的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。 第七章二元一次方程组要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。 三。 学生情况分析: 初二(3)班共有学生44人,从上学期期未统计成绩分析,及格人数为 人,
7、优秀人数为 人,这个班的学生中成绩特别差的比较多,成绩提高的难度较大。从上学期期末统测成绩来看,成绩是 分,差的 分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到 多分每个分数段的人数都差不多,这就给教学带来不利因素。 四、。教学目标 第一章 生活中的轴对称 1.在丰富的现实情境中,经历观察折叠剪纸图形欣赏与设计等数学活动过程,进一步发展空间观念。2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。3探索并了解基本图形的轴对称性及其相关性质。4能够按要求作出简单平面图形经过轴对称后的图
8、形;探索简单图形之间的轴对称关系,并能指出对称轴。5欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。 第二章 勾股定理 1经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想。2掌握勾股定理,了解利用拼图验证勾股定理的方法,能运用勾股定理解决一些实际问题。3掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。4通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。 第三章 实数 1让学生经历数系扩张探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动,发展学生的抽象概
9、括能力,并在活动中进一步发展学生独立思考合作交流的意识和能力。2结合具体情境,让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。3了解平方根立方根实数及其相关概念;会用根号表示并会求数的平方根立方根;能进行有关实数的简单运算。4能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的应用价值。 第四章 概率的初步认识 1经历“猜测验证并收集实验数据分析实验结果”的活动过程。2了解必然事件,不可能事件和不确定事件发生的可能性大小,了解事件发生的可能性及游戏规则的公平性;了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念。3能对两类
10、事件发生的概率进行简单的计算,并能设计符合要求的简单概率模型。4进一步体会数学就在我们身边,发展用数学的意识和能力。 第五章 平面直角坐标系 1从事对现实世界中确定位置的现象进行观察分析抽象和概括活动,经历探索图形坐标变化与图形形状变化之间关系的过程,进一步发展学生的数形结合意识形象思维能力和数学应用能力。2认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。3能在方格纸上建立适当的直角坐标系,描述物体的位置;能结合具体情境灵活运用多种方式确定物体的位置。4在同一直角坐标系中,感受图形变化后点的坐标的变化合格点坐标变化后图形的变化。 第六章 一次函
11、数 1经历函数一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力;经历一次函数的图像及其性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。2经历利用一次函数及其图像解决实际问题的过程,发展学生的数学应用能力;经历函数图像信息的识别与应用过程,发展学生的形象思维能力。3初步理解函数的概念;理解一次函数及其图像的有关性质;初步体会方程和函数的关系。4能根据所给信息确定一次函数表达式;会做一次函数图象,并利用它们解决简单的实际问题。 第七章 二元一次方程组 1经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活运用有关知识解决实际问题的能
12、力,培养良好的数学应用意识。2了解二元一次方程组的有关概念,会解简单的二元一次方程组;能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。3了解二元一次方程组的图像解法,初步体会方程与函数的关系。4了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想。 人教版八年级上册数学教案 篇三 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点
13、和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:将数据由小到大(或由大到小)排列,数清数据个数是奇数还是
14、偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤
15、。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定
16、义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获
17、得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售
18、的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2、 (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1、数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 2、一组数据23、27、20、18、X、12,它的中位数是21,则X
19、的值是。 3、数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5、随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度() -8 -1 7 15 21 24 30 天数3 5 5 7 6 2 2 请你根据上述数据回答问题: (1)。该组数据的中位数是什么? (2)。若当气温在1825为
20、市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 人教版八年级数学上册教案 篇四 知识目标:理解变量与函数的概念以及相互之间的关系 能力目标:增强对变量的理解 情感目标:渗透事物是运动的,运动是有规律的辨证思想 重点:变量与常量 难点:对变量的判断 教学媒体:多媒体电脑,绳圈 教学说明:本节渗透找变量之间的简单关系,试列简单关系 式 教学设计: 引入: 信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的? 信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,
21、行驶的时间为th,先填写下面的表格,在试用含t的式子表示s. t/m 1 2 3 4 5 s/km 新课: 问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y? (2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)? (3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?
22、怎样用含圆面积s的式子表示圆的半径r? (4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s? 在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。 指出上述问题中的变量和常量。 范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量? (1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式; (2)购买单价是0.4元的铅笔,总金额y(
23、元)与购买的铅笔的数量n(支)的关系; (3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系; (4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。 活动: 1.分别指出下列各式中的常量与变量。 (1)圆的面积公式s=r2; (2)正方形的l=4a; (3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x. 2.写出下列问题的关系式,并指出不、常量和变量。 (1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式。 (2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式。 思考:怎样列变量之间的关系式? 小结:变量与常量 作业:阅读教材5页,11.1.2函数14