《八年级数学上册教案(优秀9篇).docx》由会员分享,可在线阅读,更多相关《八年级数学上册教案(优秀9篇).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学上册教案(优秀9篇)人教版八年级上数学教案 篇一 教学目的: 1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。 2、结合学生的实际情况,让学生填写算式。 3、在教学中渗透数的顺序,并进行社会秩序教育。 4、学会与人合作,体会计算的多样化,发展学生思维。 教学重点: 掌握20以内数的顺序。 教学难点: 初步建立数的概念 教学准备: 每组一个数位计数器及40-50根小棒等。 教学方法: 抓问题,用多种游戏,把抽象的数位具体化。 教学步骤: 一、创设情景,寻找关键问题 1、数学课研究数学问题,一些小棒会有什么数学问题。 (每张桌子发40-5
2、0根小棒,玩小棒时间为3-5分钟) 2、你发现了什么数学问题。 (目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆) 3、游戏,看谁的手小巧。 老师报数,学生用棒子表示,讨论:快的同学的诀窍。 出示:十根可以捆一捆。 再进行游戏,让学生习惯中把1捆当作10根用。 4、完成: ()个一()个十 试一试,在计数器拔出10 个位只有几颗珠子,怎么办?(10个一是1个10) 在个位拔上一颗珠子,表示1个十,也表示10个一。 二、自主合作,解决数位顺序。 在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。
3、1、11-20各数在计数器上怎么表示呢? 问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。 (这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。) 2、 1个十,1个一是1110+1=11 10和11,十位上是1,没有变,个位由0变成1,就是11。 3、15、19、20的数位可重点检查。 (20的数位可由10-20,也可19-20来描述。) 4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。 5、练习:(口算) 10+910+8
4、10+710+610+5 10+410+39+108+107+10 6+105+104+103+10 三、实践应用,实现知识延伸 1、寻找粗心丢失的数。 游戏报数。(报数时丢一些中间数) 2、开火车顺数 游戏:数数(顺数和倒数) 3、拔珠游戏(师生生生) 报数13,拔13并写出13,同时说13的含义,还可画珠。 4、p691-6自己完成。 四、课外实践,拓展知识应用。 1、完成10-20各数数位图及小棒图。 2、和父母互说10-20各数组成。 人教版八年级数学上册的教学计划 篇二 一、指导思想: 以初中数学新课程标准为依据,全面推进素质教育。数学教学活动必须建立在学生的认知发展水平和已有的知识
5、经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。 现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方
6、式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。 二、教学目标 1、分式要求学生学会分式的四则运算,分式四则混算、解分式方程以及列分式方程解应用题。 2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。 3、勾股定理:会用勾股定理和逆定理解决实际问题。 4、四边形是
7、掌握平行四边形的定义、性质和判定,了解平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。 5、数据描述要掌握好方差及其求法。 三、情况分析: 在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,相对正规教学来说,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度
8、上,大部分学生上课不能积极的投入到学习中去,少数个学生对数学处于一种放弃的心态,课堂作业,大部分学生需要教师督促才能完成,这也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。 人教版八年级数学上册教案 篇三 教学目标 1.等腰三角形的概念。 2.等腰三角形的性质。 3.等腰三角形的概念及性质的应用。 教学重点: 等腰三角形的概念及性质。 2.等腰三角形性质的应用。
9、教学难点: 等腰三角形三线合一的性质的理解及其应用。 教学过程 .提出问题,创设情境 在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究: 三角形是轴对称图形吗? 什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是。 问题:那什么样的三角形是轴对称图形? 满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。 我们这节课就来认识一种成轴对称图形的三角形等腰三
10、角形。 .导入新课:要求学生通过自己的思考来做一个等腰三角形。 作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。 思考: 1.等腰三角形是轴对称图形吗?请找出它的对称轴。 2.等腰三角形的两底角有什么关系? 3.顶角的平分线所在的直线是等腰三角形的对称轴吗? 4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
11、 结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。 沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。 由此可以得到等腰三角形的性质: 1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一
12、”). 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程). 如右图,在ABC中,AB=AC,作底边BC的中线AD,因为 所以BADCAD(SSS). 所以B=C. 如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,因为 所以BADCAD. 所以BD=CD,BDA=CDA= BDC=90. 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:ABC各角的度数。 分析:根据等边对等角的性质,我们可以得到 A=ABD,ABC=C=BDC, 再由BDC=A+ABD
13、,就可得到ABC=C=BDC=2A. 再由三角形内角和为180,就可求出ABC的三个内角。 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷。 解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC. A=ABD(等边对等角). 设A=x,则BDC=A+ABD=2x, 从而ABC=C=BDC=2x. 于是在ABC中,有 A+ABC+C=x+2x+2x=180, 解得x=36.在ABC中,A=35,ABC=C=72. 师下面我们通过练习来巩固这节课所学的知识。 .随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49P51,然后小结。 .课时小结 这节课我们主要探讨
14、了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。 .作业:课本P56习题12.3第1、2、3、4题。 板书设计 12.3.1.1等腰三角形 一、设计方案作出一个等腰三角形 二、等腰三角形性质:1.等边对等角2.三线合一 人教版八年级上册数学教案 篇四 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映
15、一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定
16、要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:将数据由小到大(或由大到小)排列,数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然
17、后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3
18、)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
19、 教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所
20、示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2、 (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1、数据8、9、9、8、10、8、99
21、、8、10、7、9、9、8的中位数是,众数是 2、一组数据23、27、20、18、X、12,它的中位数是21,则X的值是。 3、数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5、随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度() -8 -1 7 15 21 24 30 天数3
22、5 5 7 6 2 2 请你根据上述数据回答问题: (1)。该组数据的中位数是什么? (2)。若当气温在1825为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 人教版八年级数学上册的教学计划 篇五 一、加强学习,努力提高自身的素质 一方面,认真学习教师职业的道德规范、,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力。通过学习,转变了以前的工作观、学生观,使我对新课改理念有了一个全面的、深入的理解,为本人转变教学观念、改进教学方法打好了基础。 二、以身作则
23、,严格遵守工作纪律 一方面,在工作中,本人能够严格要求自己,模范遵守学校的各项规章制度,做到不迟到、不早退,不旷会。另一方面,本人能够严格遵守教师职业道德规范,关心爱护学生,不体罚,变相体罚学生,建立了良好的师生关系,在学生中树立了良好的形象。 三、强化常规,提高课堂教学效率 本学期,本人能够强化教学常规各环节:在课前深入钻研、细心挖掘教材,把握教材的基本思想、基本概念、教材结构、重点与难点;了解学生的知识基础,力求在备课的过程中即备教材又备学生,准确把握教学重点、难点,不放过每一个知识点,在此基础上,精心制作多媒体课件(本学期本人共制作多媒体课件30个),备写每一篇教案;在课堂上,能够运用多
24、种教学方法,利用多种教学手段,充分调动学生的多种感官,激发学生的学习兴趣,向课堂40分要质量,努力提高课堂教学效率;在课后,认真及时批改作业,及时做好后进学生的思想工作及课后辅导工作;在自习课上,积极落实分层施教的原则,狠抓后进生的转化和优生的培养;同时,进行阶段性检测,及时了解学情,以便对症下药,调整教学策略。认真参加教研活动,积极参与听课、评课,虚心向同行学习,博采众长,提高教学水平。一学期来,本人共听课32节,完成了学校规定的听课任务。 四、加强研讨,努力提高教研水平 本学年,本人参加省级教研课题“开放性问题学习的研究”的子课题及县级课题开放性教学课型的研究的子课题的研究工作,积极撰写课
25、题实施方案,撰写个案、教学心得体会,及时总结研究成果,撰写论文,为课题研究工作积累了资料,并积极在教学中进行实践。在课堂教学中,贯彻新课改的理念,积极推广先进教学方法,在推广目标教学法、读书指导法等先进教法的同时,大胆进行自主、合作、探究学习方式的尝试,充分发挥学生的主体作用,使学生的情感、态度、价值观等得到充分的发挥,为学生的终身可持续发展打好基础。 五、正视自我,明确今后努力方向 本次期末考试,我所带班成绩相对其它平行班而言,有一定的差距,本人认真进行了反思,原因主要有以下几个方面: 1、在课堂教学中充分利用多媒体课件,调动了学生的积极性,但对学生基础知识的训练不够,致使课堂教学效率不高;
26、 2、对知识点的检查落实不到位; 3、对差生的说服教育缺乏力度,虽然也抓了差生,但没有时时抓在手上。 4、教学中投入不够,没能深入研究教材及学生。 人教版八年级数学上册的教学计划 篇六 一、指导思想 通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。 二、学情分析 本学期我继续担任八年级三班四班的数学教学工作,两个班共有109人,从上学期期末考试成绩来看,两班数学基础一般,而且已经开始出现两极分化现象,一部分学生解题作答比较粗心,不能很好的发挥自己的水平,因此要在本期获得理
27、想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。 三、教学目标 知识技能目标:认识三角形,掌握三角形中各种线段及外角相关知识,进而对多边形的相关知识进行理解掌握;掌握全等三角形的性质与判定、轴对称及轴对称图形的特点;掌握整式的乘除运算、乘法公式和因式分解。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。 过程方法目标:掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;初步建立数形结合的思维模式,学会观察、分析、归纳、总结几何图形的内在特点,
28、学会使用数学语言表示数学关系。 态度情感目标:通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。 四、教材分析 第十一章三角形 本章主要学习与三角形有关的线段、角及多边形的内角和等内容。 本章重点:三角形有关线段、角及多边形的内角和的性质与应用。 本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角
29、和的证明与多边形内角和的探究。 第十二章全等三角形 本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。 教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。 教学难点:领会证明的分析思路、学会运用综合法证明的格式。 第十三章轴对称 本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。 教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。 教学难点:轴对称性质的应用。 第十四章整式的乘法和因式分解 本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。 教学重点:整式的乘除运算以及因式
30、分解。 教学难点:对多项式进行因式分解及其思路。 第十五章分式 本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。 教学重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。 人教版八年级数学上册教案 篇七 教学目标: 1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。 2、掌握勾股定理和他的简单应用 重点难点: 重点:能熟练运用拼图的方法证明勾股定理 难点:用面积证勾股定理 教学过程 七、创设
31、问题的情境,激发学生的学习热情,导入课题 我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图17)接着提问:大正方形的面积可表示为什么? (同学们回答有这几种可能:(1)(2)) 在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。 =请同学们对上面的式子进行化简,得到:即= 这就可以从理论上说明勾股定理存在
32、。请同学们去用别的拼图方法说明勾股定理。 八、讲例 1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米? 分析:根据题意:可以先画出符合题意的图形。如右图,图中ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。 解:由勾股定理得 即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为: 答:飞机每个小时飞行540千米。
33、九、议一议 展示投影2(书中的图19) 观察上图,应用数格子的方法判断图中的三角形的三边长是否满足 同学在议论交流形成共识之后,老师总结。 勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。 十、作业 1、1、课文P111.21、2 2、选用作业。 人教版八年级数学上册教案 篇八 教学目标: 1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。 2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。 重点难点: 重点:了解勾股定理的由来,并能用它来解决一些简单的问题。 难点
34、:勾股定理的发现 教学过程 一、创设问题的情境,激发学生的学习热情,导入课题 出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。 出示投影2(书中的。P2图12)并回答: 1、观察图1-2,正方形A中有_个小方格,即A的面积为_个单位。 正方形B中有_个小方格,即A的面积为_个单位。 正方形C中有_个小方格,即A的面积为_个单位。 2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问: 3、图12中,A,B,C之间的面积之间有什么关系? 学生
35、交流后形成共识,教师板书,A+B=C,接着提出图11中的A.B,C的关系呢? 二、做一做 出示投影3(书中P3图14)提问: 1、图13中,A,B,C之间有什么关系? 2、图14中,A,B,C之间有什么关系? 3、从图11,12,13,1|4中你发现什么? 学生讨论、交流形成共识后,教师总结: 以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。 三、议一议 1、图11、12、13、14中,你能用三角形的边长表示正方形的面积吗? 2、你能发现直角三角形三边长度之间的关系吗? 在同学的交流基础上,老师板书: 直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理” 也就是说:
36、如果直角三角形的两直角边为a,b,斜边为c 那么 我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。 3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立) 四、想一想 这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢? 五、巩固练习 1、错例辨析: ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4 所以它的第三边的c应满足=25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这
37、个必不可少的条件,可本题 ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。 (2)若告诉ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边 综上所述这个题目条件不足,第三边无法求得。 2、练习P71.11 六、作业 课本P71.12、3、4 人教版八年级上数学教案 篇九 教学目标: 知识与技能 1、掌握直角三角形的判别条件,并能进行简单应用; 2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型。 3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。 情感态度与价值观 敢于面对数学学习中的困难,并有独立
38、克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。 教学重点 运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。 教学难点 会辨析哪些问题应用哪个结论。 课前准备 标有单位长度的细绳、三角板、量角器、题篇 教学过程: 复习引入: 请学生复述勾股定理;使用勾股定理的前提条件是什么? 已知ABC的两边AB=5,AC=12,则BC=13对吗? 创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法。 这样做得到的是一个直角三角形吗? 提出课题
39、:能得到直角三角形吗 讲授新课: 、如何来判断?(用直角三角板检验) 这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系? 就是说,如果三角形的三边为,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时) 、继续尝试:下面的三组数分别是一个三角形的三边长a,b,c: 5,12,13;6,8,10;8,15,17. (1)这三组数都满足a2+b2=c2吗? (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗? 、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
40、满足a2+b2=c2的三个正整数,称为勾股数。 例1一个零件的形状如左图所示,按规定这个零件中A和DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗? 随堂练习: 、下列几组数能否作为直角三角形的三边长?说说你的理由。 9,12,15;15,36,39; 12,35,36;12,18,22. 、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_三角形,_是角。 、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且ABC=900,求这个四边形的面积。 、习题1.3 课堂小结: 直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。 满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。26