《一元二次方程习题课.ppt》由会员分享,可在线阅读,更多相关《一元二次方程习题课.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一元二次方程一元二次方程习题课习题课第一关知识要点说一说一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法方程两边都是整式方程两边都是整式axax+bx+c=0+bx+c=0(a a 0 0)只含有一个未知数只含有一个未知数求知数的最高次数是求知数的最高次数是2 2配配 方方 法法求求 根根 公式法公式法直接开平方法直接开平方法因因 式式 分解法分解法二次项系数为二次项系数为1,而一次项系数为偶数,而一次项系数为偶数第二关基础题目轮一轮明辨是非明辨是非判断下列方程是不是一元二次方程,若不是一元二判断下列方程是不是一元二次方程,若不是一元二次方程,请
2、说明理由?次方程,请说明理由?1、(x1)、x22x=8、xy+5、xx6、ax2+bx+c3、x2+一元二次方程的一般式一元二次方程的一般式(a0a0)一元二次方程一元二次方程一般形式一般形式二次项二次项系数系数一次项一次项系数系数常数常数项项 3x 3x=1=1 2y(y-3)=-43x3x-1=0-1=03 32 2-6-6-1-14 40 02y2y2 2-6y+4=0-6y+4=0第三关典型例题显一显直接开平方法:直接开平方法:1.1.用开平方法的用开平方法的条件条件是是:缺少一次项的缺少一次项的一元二次方程,用开平方法比较方便一元二次方程,用开平方法比较方便;2.2.形如形如:ax
3、2+c=o (即没有一次项即没有一次项).a(x+m)2=k用配方法解方程用配方法解方程配方法:配方法:用配方法的用配方法的条件条件是是:适应于任何一个一适应于任何一个一元二次方程,但是在没有特别要求的情元二次方程,但是在没有特别要求的情况下,除了形如况下,除了形如x2+2kx+c=0 用配方法用配方法外,一般不用外,一般不用;(;(即二次项系数为即二次项系数为1 1,一次项系数是偶数。)一次项系数是偶数。)配方法的一般配方法的一般步步骤骤:一除一除-把把二次项系数二次项系数化为化为1(方程的两边同方程的两边同 时除以二次项系数时除以二次项系数a)二移二移-把常数项移到方程的把常数项移到方程的
4、右边右边;三配三配-把方程的左边配成一个把方程的左边配成一个完全平方式完全平方式;四开四开-利用利用开平方法开平方法求出原方程的两个解求出原方程的两个解.一除、二移、三配、四开、五解一除、二移、三配、四开、五解.公式法:公式法:用公式法的用公式法的条件条件是是:适应于任何一个一适应于任何一个一元二次方程,先将方程化为一般形式,元二次方程,先将方程化为一般形式,再求出再求出b2-4ac的值,的值,b2-4ac0则方程有则方程有实数根,实数根,b2-4ac0 时,方程有两个不相等的实数根;时,方程有两个不相等的实数根;当当b2-4ac=0 时,方程有两个相等的实数根;时,方程有两个相等的实数根;当
5、当b2-4acax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2 2、公式法虽然是万能的,对任何一元二次方程都适用,、公式法虽然是万能的,对任何一元二次方程都适用,但不一定但不一定 是最简单的,因此在解方程时我们首先考是最简单的,因此在解方程时我们首先考虑能否应用虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单方等简单方法,若不行,再考虑公式法(适当也可考虑配方法)法,若不行,再考虑公式法(适当也可考虑配方法)3 3、方程中有括号时,应先用整体思想考虑有没有简单方、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。形式再选取合理的方法。1 1、直接开平方法直接开平方法因式分解法因式分解法