《二次函数与商品销售问题.ppt》由会员分享,可在线阅读,更多相关《二次函数与商品销售问题.ppt(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、22.3 实际问题与二次函数第2课时 二次函数与商品利润 在日常生活中存在着许许多多的与数学知识有关的在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。实际问题。如繁华的商业城中很多人在买卖东西。如果你去买商品,你会选买哪一家呢?如果你是商场经理,如果你去买商品,你会选买哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?如何定价才能使商场获得最大利润呢?探究探究2 2,已知某商品的进价为每件已知某商品的进价为每件4040元。元。现在的售价是每件现在的售价是每件6060元,每星期可卖元,每星期可卖出出300300件。市场调查反映:如调整价格件。
2、市场调查反映:如调整价格,每涨价一元,每星期要少卖出,每涨价一元,每星期要少卖出1010件;每降价一元,每星期可多卖出件;每降价一元,每星期可多卖出2020件。如何定价才能使利润最大?件。如何定价才能使利润最大?解:设每件涨价为解:设每件涨价为x元时获得的总利润为元时获得的总利润为y元元.y=(60-40+x)(300-10 x)=(20+x)(300-10 x)=-10 x2+100 x+6000 =-10(x2-10 x)+6000 =-10(x-5)2-25+6000 =-10(x-5)2+6250当当x=5时,时,y的最大值是的最大值是6250.定价定价:60+5=65(元)(元)(0
3、 x30)怎样确定x的取值范围解解:设每件降价设每件降价x元时的总利润为元时的总利润为y元元.y=(60-40-x)(300+20 x)=(20-x)(300+20 x)=-20 x2+100 x+6000=-20(x2-5x-300)=-20(x-2.5)2+6125(0 x20)所以定价为所以定价为60-2.5=57.5时利润最大时利润最大,最大值为最大值为6125元元.答答:综合以上两种情况,定价为综合以上两种情况,定价为65元时可获得元时可获得最大利润为最大利润为6250元元.由由(2)(3)的讨论及现在的销的讨论及现在的销售情况售情况,你知道应该如何定你知道应该如何定价能使利润最大了
4、吗价能使利润最大了吗?怎样确定x的取值范围(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.解决这类题目的一般步骤w 某商店购进一批单价为某商店购进一批单价为2020元的日用品元的日用品,如果以单如果以单价价3030元销售元销售,那么半个月内可以售出那么半个月内可以售出400400件件.根据销根据销售经验售经验,提高单价会导致销售量的减少提高单价会导致销售量的减少,即销售单价即销售单价每提高每提高1 1元元,销售量相应减少销售量相应减少2020件件.售价售价提高多少元提高多少元时时,才能在半个月内获得最大利润才能在半个月内获得最大利润?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x)=-20 x2+200 x+4000 =-20(x-5)2+4500 当x=5时,y最大=4500 答:当售价提高5元时,半月内可获最大利润4500元我来当老板