《分类加法计数原理与分步乘法计数原理(优质课).ppt》由会员分享,可在线阅读,更多相关《分类加法计数原理与分步乘法计数原理(优质课).ppt(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.1分类计数原理分类计数原理与分步计数原理分步计数原理 问题剖析问题剖析 问题问题1要完成什么事情要完成什么事情完成这个事情有完成这个事情有几几类类方案方案每类每类方案能否独立方案能否独立完成这件事情完成这件事情每类每类方案中分别有方案中分别有几种不同的方法几种不同的方法完成这件事情共有完成这件事情共有多少种不同的方法多少种不同的方法两类两类能能26种种 10种种26+10=36种种或或一个一个阿拉伯数字给教室里的座位编号,总共阿拉伯数字给教室里的座位编号,总共能够能够编出编出多少种不同的号码?多少种不同的号码?请思考请思考:问题问题1:用:用一个一个大写的英文字母大写的英文字母用用一个一个
2、大写的英文字母或大写的英文字母或一个一个阿拉伯阿拉伯数字给教室里的座位编号数字给教室里的座位编号假如你从假如你从平川平川到到兰州,兰州,请问你共有多少种不同的走法?请问你共有多少种不同的走法?客车每天有客车每天有3 3个班次,火车每天有个班次,火车每天有2 2个班次,个班次,可以坐直达客车可以坐直达客车或或直达火车,直达火车,客车客车1 1客车客车2 2客车客车3 3火车火车1 1火车火车2 2平川平川兰州兰州分析:分析:分析:分析:完成完成从平川到兰州从平川到兰州这件事有这件事有2类方案,类方案,所以,所以,从平川到从平川到兰兰州共有州共有3+2=5种方法种方法.问题问题1:1:你能否发现这
3、两个问题有什么共同特征?你能否发现这两个问题有什么共同特征?1 1、都是要完成一件事、都是要完成一件事2 2、用任何一类方法都能直接完成这件事、用任何一类方法都能直接完成这件事3 3、都是采用加法运算、都是采用加法运算你能总结出这类问题的一般解决规律吗?你能总结出这类问题的一般解决规律吗?你能总结出这类问题的一般解决规律吗?你能总结出这类问题的一般解决规律吗?完成一件事有完成一件事有两类不同的方案两类不同的方案,在在第第1 1类类方案中有方案中有m种不同的方法,种不同的方法,在在第第2 2类类方案中有方案中有n种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 N=m+n种不同的
4、方法。种不同的方法。例例1.在填写高考志愿表时在填写高考志愿表时,一名高中毕业生了解到一名高中毕业生了解到A,B两所大学各有一些自己感兴趣的强项专业两所大学各有一些自己感兴趣的强项专业,具体具体情况如下情况如下:A大学大学B大学大学生物学生物学化学化学医学医学物理学物理学工程学工程学数学数学会计学会计学信息技术学信息技术学法学法学如果这名同学只能选一个专业如果这名同学只能选一个专业,那么他共有多少种那么他共有多少种选择呢选择呢?变式:变式:在填写高考志愿表时在填写高考志愿表时,一名高中毕业生了解一名高中毕业生了解到到,A,B,C三所大学各有一些自己感兴趣的强项专业三所大学各有一些自己感兴趣的强
5、项专业,具体情况如下具体情况如下:A大学大学B大学大学生物学生物学化学化学医学医学物理学物理学工程学工程学数学数学会计学会计学信息技术学信息技术学法学法学如果这名同学只能选一个专业如果这名同学只能选一个专业,那么他共有多少种那么他共有多少种选择呢选择呢?C大学大学机械制造机械制造建筑学建筑学广告学广告学汉语言文学汉语言文学韩语韩语N=5+4+5=14(种种)如果完成一件事情有如果完成一件事情有3类不同方案,在第类不同方案,在第1类方类方案中有案中有m1种不同的方法,在第种不同的方法,在第2类方案中有类方案中有m2种不同的方法,在第种不同的方法,在第3类方案中有类方案中有m3种不同的种不同的方法
6、,那么完成这件事情有方法,那么完成这件事情有 种不同的方法种不同的方法N=m1+m2+m3探究探究1 如果完成一件事情有如果完成一件事情有n类不同方案,在每一类类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?中都有若干种不同方法,那么应当如何计数呢?完成一件事有完成一件事有 n 类不同的方案类不同的方案,在在第第1 1类类方案中有方案中有 m1 种不同的方法,种不同的方法,在在第第2 2类类方案中有方案中有 m2 种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 种不同的方法。种不同的方法。在在第第n类类方案中有方案中有mn种不同的方法,种不同的方法,引例引例1
7、1:用一个大写的英文字母用一个大写的英文字母或或一个阿拉伯一个阿拉伯数字数字给给教室里的座位教室里的座位编编号,号,总总共能共能够编够编出多少种出多少种不同的号不同的号码码?变换:变换:用前用前6 6个大写英文字母个大写英文字母和和1 19 9九个阿拉伯九个阿拉伯数字,以数字,以A A1 1,A A2 2,B B1 1,B B2 2,的方式的方式给给教室里教室里的座位的座位编编号,号,总总共能共能编编出多少种不同的号出多少种不同的号码码?分析:分析:完成完成给教室里的座位编号编号给教室里的座位编号编号这件事这件事 分两分两步完成:步完成:第第1步步:先确定一个英文字母:先确定一个英文字母第第2
8、步,步,后确定一个阿拉伯数字后确定一个阿拉伯数字字母字母数字数字 得到的号码得到的号码123456789A1A2A3A4A5A6A7A8A9树形图树形图ABB1B2B3B4B5B6B7B8B9CC1C2C3C4C5C6C7C8C9DD1D2D3D4D5D6D7D8D9EE1E2E3E4E5E6E7E8E9FF1F2F3F4F5F6F7F8F9变换:变换:用前用前6 6个大写英文字母个大写英文字母和和1 19 9九个阿拉伯九个阿拉伯数字,以数字,以A A1 1,A A2 2,B B1 1,B B2 2,的方式的方式给给教室教室里的座位里的座位编编号,号,总总共能共能编编出多少种不同的号出多少种不
9、同的号码码?分析:分析:完成完成给教室里的座位编号给教室里的座位编号这件事需要这件事需要两个步骤两个步骤,第第1 1步,步,确定一个英文字母,有确定一个英文字母,有6 6种种不同方法;不同方法;第第2 2步,步,确定确定一个阿拉伯数字,有一个阿拉伯数字,有9 9种种不同方法;不同方法;所以,编号共有所以,编号共有6 69=549=54种方法种方法.例例2、设某班有男生设某班有男生30名,女生名,女生24名。现要从中选出名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同男、女生各一名代表班级参加比赛,共有多少种不同的选法?的选法?例例3、长征的部分电话号码是长征的部分电话号码是094
10、3665,后面每个数后面每个数字来自字来自09这这10个数个数,问可以产生多少个不同的电话号问可以产生多少个不同的电话号码码?变式变式:若要求最后若要求最后4个数字不重复个数字不重复,则又有多少种不同则又有多少种不同的电话号码的电话号码?094366510 10 10 10=104分析分析:分析分析:=504010 987 完成一件事有完成一件事有两类两类不同方案不同方案,在第在第1 1类方案中有类方案中有m种不种不同的方法同的方法,在第在第2 2类类方案中有方案中有n种不同的种不同的方法方法.那么完成这件那么完成这件事共有事共有 种不同的方法种不同的方法.N=m+n分类加法计数原理:分类加法
11、计数原理:完成一件事需完成一件事需要要两个步骤两个步骤,做第做第1 1步有步有m种不同的方法种不同的方法,做第做第2 2步有步有n种不同种不同的方法的方法.那么完成这那么完成这件事共有件事共有 N=mn分步乘法计数原理分步乘法计数原理:种不同的方法种不同的方法.那么完成这件事共有那么完成这件事共有种不同的方法种不同的方法。完成一件事需要完成一件事需要n个个步骤步骤,做做第第1 1步步有有m1 种不同的方法,种不同的方法,做做第第2 2步步有有m2种不同的方法,种不同的方法,做做第第n步步有有mn种不同的方法,种不同的方法,两个计数原理两个计数原理 分类加法计数原理分类加法计数原理分步乘法计数原
12、理分步乘法计数原理相同点相同点不同点不同点注意点注意点用来计算用来计算“完成一件事完成一件事”的方法种数的方法种数每类每类方案中的每一方案中的每一种方法都能种方法都能_ _ 完成这件事完成这件事每步每步_才才算完成这件事情算完成这件事情(每步中的每一种(每步中的每一种方法方法不能独立不能独立完成完成这件事)这件事)类类类类相加相加步步步步相乘相乘类类独立类类独立步步相依步步相依独立独立依次完成依次完成不重不漏不重不漏步骤完整步骤完整分类分类完成完成分步分步完成完成解:从书架上任取解:从书架上任取1 1本书,本书,例例3 3 书架上的第书架上的第1 1层放着层放着4 4本不同的计算机书,第本不同
13、的计算机书,第2 2层放层放着着3 3本不同的文艺书,第本不同的文艺书,第3 3层放着层放着2 2本不同的体育书。本不同的体育书。第第1 1类方法是从第类方法是从第1 1层取层取1 1本计算机书,有本计算机书,有4 4种方法;种方法;第第2 2类方法是从第类方法是从第2 2层取层取1 1本文艺书,有本文艺书,有3 3种方法;种方法;第第3 3类方法是从第类方法是从第3 3层取层取1 1本体育书,有本体育书,有2 2种方法。种方法。根据分类加法计数原理,不同取法的种数是:根据分类加法计数原理,不同取法的种数是:N=4+3+2=9.N=4+3+2=9.(1 1)从书架上任取)从书架上任取1 1本书
14、,有几种不同的取法?本书,有几种不同的取法?有三类方法:有三类方法:(2 2)从书架上的第)从书架上的第1 1、2 2、3 3层各取层各取1 1本书,有几种不同本书,有几种不同的取法?的取法?例例3 3 书架上的第书架上的第1 1层放着层放着4 4本不同的计算机书,第本不同的计算机书,第2 2层放层放着着3 3本不同的文艺书,第本不同的文艺书,第3 3层放着层放着2 2本不同的体育书。本不同的体育书。(1 1)从书架上任取)从书架上任取1 1本书,有几种不同的取法?本书,有几种不同的取法?解:从书架的第解:从书架的第1 1,2 2,3 3层各取层各取1 1本书,本书,第第1 1步:从第步:从第
15、1 1层取层取1 1本计算机书,有本计算机书,有4 4种方法;种方法;第第2 2步:从第步:从第2 2层取层取1 1本文艺书,有本文艺书,有3 3种方法;种方法;第第3 3步:从第步:从第3 3层取层取1 1本体育书,有本体育书,有2 2种方法。种方法。根据分步计数原理,不同取法的种数是:根据分步计数原理,不同取法的种数是:N=4N=43 32=24.2=24.可以分成三个步骤完成:可以分成三个步骤完成:解答计数问题的一般思维过程:解答计数问题的一般思维过程:完成一件什么事完成一件什么事完成一件什么事完成一件什么事如何完如何完如何完如何完成这件事成这件事成这件事成这件事利用加法原理进行计数利用
16、加法原理进行计数利用加法原理进行计数利用加法原理进行计数方法方法方法方法的分类的分类的分类的分类过程过程过程过程的分步的分步的分步的分步利用乘法原理进行计数利用乘法原理进行计数利用乘法原理进行计数利用乘法原理进行计数例例4 4 要从甲、乙、丙要从甲、乙、丙、3 3幅不同的画中选出幅不同的画中选出2 2幅,幅,分别挂在左、右两边墙上的指定位置,问共有分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?多少种不同的挂法?甲甲乙乙丙丙解:从解:从3 3幅画中选出幅画中选出2 2幅分别挂在左、右两边墙幅分别挂在左、右两边墙上,可以分两个步骤完成:上,可以分两个步骤完成:第一步,从第一步,从3 3
17、幅画中选幅画中选1 1幅挂在左边墙上,有幅挂在左边墙上,有3 3种选法;种选法;第二步,从剩下的第二步,从剩下的2 2幅画中选幅画中选1 1幅挂在右边墙上,幅挂在右边墙上,有有2 2种选法。种选法。根据分步计数原理,不同挂法的种数是:根据分步计数原理,不同挂法的种数是:N=3N=32=6.2=6.思考:还有其他解答本题的方法吗?例例4 4 要从甲、乙、丙要从甲、乙、丙、3 3幅不同的画中选出幅不同的画中选出2 2幅,幅,分别挂在左、右两边墙上的指定位置,问共有分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?多少种不同的挂法?甲甲乙乙丙丙解:从解:从3 3幅画中选出幅画中选出2 2幅分
18、别挂在左、右两边墙幅分别挂在左、右两边墙上,可以分两个步骤完成:上,可以分两个步骤完成:第一步,从第一步,从3 3幅画中幅画中选出选出2 2幅幅,有,有3 3种选法;种选法;(“甲、乙甲、乙”,“甲、丙甲、丙”,“乙、丙乙、丙”)第二步,将选出的第二步,将选出的2 2幅画幅画挂好挂好,有,有2 2中挂法中挂法根据分步计数原理,不同挂法的种数是:根据分步计数原理,不同挂法的种数是:N=3N=32=6.2=6.变式变式 要从甲、乙、丙要从甲、乙、丙、丁、戊、丁、戊5 5幅不同的画中幅不同的画中选出选出2 2幅,分别挂在左、右两边墙上的指定位置,幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同
19、的挂法?问共有多少种不同的挂法?甲甲乙乙丙丙丁丁戊戊解:从解:从5 5幅画中选出幅画中选出2 2幅分别挂在左、右两边墙幅分别挂在左、右两边墙上,可以分两个步骤完成:上,可以分两个步骤完成:第一步,从第一步,从5 5幅画中选幅画中选1 1幅挂在左边墙上,有幅挂在左边墙上,有5 5种选法;种选法;第二步,从剩下的第二步,从剩下的4 4幅画中选幅画中选1 1幅挂在右边墙上,幅挂在右边墙上,有有4 4种选法。种选法。根据分步计数原理,不同挂法的种数是:根据分步计数原理,不同挂法的种数是:N=5N=54=20.4=20.例例5.5.五名学生报名参加四项体育比赛,每人限五名学生报名参加四项体育比赛,每人限
20、报一项,报名方法的种数为多少?又他们争夺报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少这四项比赛的冠军,获得冠军的可能性有多少种?种?解:(解:(1)5名学生中任一名均可报其中的任一项,因此每名学生中任一名均可报其中的任一项,因此每个学生都有个学生都有4种报名方法,种报名方法,5名学生都报了项目才能算完成名学生都报了项目才能算完成这一事件故报名方法种数为这一事件故报名方法种数为44444=种种.(2)每个项目只有一个冠军,每一名学生都可能获得)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有其中的一项获军,因此每个项目获冠
21、军的可能性有5种种故有故有n=5=种种.例例6.给程序模块命名,需要用给程序模块命名,需要用3个字符,其中首个字个字符,其中首个字符要求用字母符要求用字母AG或或UZ,后两个要求用数字,后两个要求用数字19,问最多可以给多少个程序命名?,问最多可以给多少个程序命名?分析:分析:要给一个程序模块命名,可以分三个步骤:第一步,要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,先中间字符;第三步,选末位字符。选首字符;第二步,先中间字符;第三步,选末位字符。解:解:首字符共有首字符共有7+613种不同的选法,种不同的选法,答:答:最多可以给最多可以给10531053个程序命名。个程序命
22、名。中间字符和末位字符各有中间字符和末位字符各有9种不同的选法种不同的选法根据分步计数原理,最多可以有根据分步计数原理,最多可以有13991053种不同的选法种不同的选法例例7.核糖核酸(核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个)分子是在生物细胞中发现的化学成分,一个RNA分子分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据,总共有个不同的碱基,分别用为碱基的化学成分所占据,总共有个不同的碱基,分别用A,C,G,U表表示,在一个示,在一个RNA分子中,各种碱基能够以任意
23、次序出现,所以在任意一个位分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关。假设有一类置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由分子由100个碱基组个碱基组成,那么能有多少种不同的成,那么能有多少种不同的RNA分子?分子?UUUAAACCCGGG分析分析:用用100个位置表示由个位置表示由100个碱基组成的长链,每个位置都可以从个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据。中任选一个来占据。第1位第2位第3位第100位4种4种4种4种解:解:100个碱基组成的长链共有个碱基组成的长链共有100个位置,在每个位置中,从个位置,
24、在每个位置中,从A、C、G、U中任选一个来填入,每个位置有中任选一个来填入,每个位置有4种填充方法。根据分步计数原理,共有种填充方法。根据分步计数原理,共有种不同的种不同的RNA分子分子.例例8.电子元件很容易实现电路的通与断、电位的高与底等两种电子元件很容易实现电路的通与断、电位的高与底等两种状态,而这也是最容易控制的两种状态。因此计算机内部就采状态,而这也是最容易控制的两种状态。因此计算机内部就采用了每一位只有用了每一位只有0或或1两种数字的计数法,即二进制,为了使计两种数字的计数法,即二进制,为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一算机能够识别字符,需要对字符进行编
25、码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由个二进制位构成,问量单位,每个字节由个二进制位构成,问(1)一个字节()一个字节(8位)最多可以表示多少个不同的字符?位)最多可以表示多少个不同的字符?(2)计算机汉字国标码()计算机汉字国标码(GB码)包含了码)包含了6763个汉字,一个汉个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?少个字节表示?第1位第2位第3位第8位2种2种2种2种如如00000000,
26、10000000,11111111.开始子模块118条执行路径子模块328条执行路径子模块245条执行路径子模块543条执行路径子模块438条执行路径结束A例例9.计算机编程人员在编计算机编程人员在编写好程序以后要对程序进写好程序以后要对程序进行测试。程序员需要知道行测试。程序员需要知道到底有多少条执行路(即到底有多少条执行路(即程序从开始到结束的线),程序从开始到结束的线),以便知道需要提供多少个以便知道需要提供多少个测试数据。一般的,一个测试数据。一般的,一个程序模块又许多子模块组程序模块又许多子模块组成,它的一个具有许多执成,它的一个具有许多执行路径的程序模块。问:行路径的程序模块。问:
27、这个程序模块有多少条执这个程序模块有多少条执行路径?另外为了减少测行路径?另外为了减少测试时间,程序员需要设法试时间,程序员需要设法减少测试次数,你能帮助减少测试次数,你能帮助程序员设计一个测试方式,程序员设计一个测试方式,以减少测试次数吗?以减少测试次数吗?开始子模块118条执行路径子模块328条执行路径子模块245条执行路径子模块543条执行路径子模块438条执行路径结束A分析:分析:整个模块的任整个模块的任意一条路径都分两步意一条路径都分两步完成完成:第:第1步是从开步是从开始执行到始执行到A点;第点;第2步步是从是从A点执行到结束。点执行到结束。而第步可由子模块而第步可由子模块1或子模
28、块或子模块2或子模块或子模块3来完成;第二步可由来完成;第二步可由子模块子模块4或子模块或子模块5来来完成。因此,分析一完成。因此,分析一条指令在整个模块的条指令在整个模块的执行路径需要用到两执行路径需要用到两个计数原理。个计数原理。开始子模块118条执行路径子模块328条执行路径子模块245条执行路径子模块543条执行路径子模块438条执行路径结束A再测试各个模块之间的信再测试各个模块之间的信息交流是否正常,需要测息交流是否正常,需要测试的次数为:试的次数为:3*2=6。如果每个子模块都正常工如果每个子模块都正常工作,并且各个子模块之间作,并且各个子模块之间的信息交流也正常,那么的信息交流也
29、正常,那么整个程序模块就正常。整个程序模块就正常。这样,测试整个这样,测试整个模块的次数就变为模块的次数就变为 172+6=178(次)(次)2)在实际测试中,程序)在实际测试中,程序员总是把每一个子模块看员总是把每一个子模块看成一个黑箱,即通过只考成一个黑箱,即通过只考察是否执行了正确的子模察是否执行了正确的子模块的方式来测试整个模块。块的方式来测试整个模块。这样,他可以先分别单独这样,他可以先分别单独测试测试5个模块,以考察每个模块,以考察每个子模块的工作是否正常。个子模块的工作是否正常。总共需要的测试次数为:总共需要的测试次数为:18+45+28+38+43=172。例例10.随着人们生
30、活水平的提高,某城市家庭汽车拥有量迅速随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容。交通管理部门出台了一种汽车增长,汽车牌照号码需要扩容。交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有个不重复的英文字牌照组成办法,每一个汽车牌照都必须有个不重复的英文字母和个不重复的阿拉伯数字,并且个字母必须合成一组出母和个不重复的阿拉伯数字,并且个字母必须合成一组出现,个数字也必须合成一组出现,那么这种办法共能给多少现,个数字也必须合成一组出现,那么这种办法共能给多少辆汽车上牌照辆汽车上牌照?如图,从甲地到乙地有如图,从甲地到乙地有2条路,从乙地到丁地条路,从乙地
31、到丁地有有3条路;从甲地到丙地有条路;从甲地到丙地有4条路可以走,从丙条路可以走,从丙地到丁地有地到丁地有2条路。从甲地到丁地共有多少种条路。从甲地到丁地共有多少种不同地走法?不同地走法?课堂练习课堂练习甲地甲地丙地丙地丁地丁地乙地乙地N1=23=6N2=42=8N=N1+N2=141.1.本节课学习了哪些主要内容?本节课学习了哪些主要内容?2.2.你如何来判别使用哪个计数原你如何来判别使用哪个计数原理?理?共同点共同点:分类加法分类加法计数原理计数原理分步乘法分步乘法计数原理计数原理完成一件事有完成一件事有n类类不同不同的方案;的方案;各类方案各类方案相互独立相互独立;每一类方案每一类方案都
32、能直接完都能直接完成成该事件。该事件。完成一件事要完成一件事要n个不同的个不同的步骤步骤;每一个步骤每一个步骤都不能直接完都不能直接完成成该事件,只有完成每个该事件,只有完成每个步骤,才能完成这件事。步骤,才能完成这件事。各个步骤各个步骤相互联系相互联系;相相互互联联系系分分步步到到达达相相互互独独立立直直达达目目的的都是有关都是有关“完成一件事情完成一件事情”的所有不同方法的的所有不同方法的种数问题。种数问题。主要不同点主要不同点:描述分类计数原理和分步计数原理的诗:两大原理妙无穷,两大原理妙无穷,解题应用各不同;解题应用各不同;多思慎密最重要,多思慎密最重要,茫茫数理此中求茫茫数理此中求。