《人工智能50年-智能科学网站.ppt》由会员分享,可在线阅读,更多相关《人工智能50年-智能科学网站.ppt(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人工智能50年李 德 毅 2005年6月10日 人工智能学科发展战略研讨会 1一、一、50年人工智能发展里程碑年人工智能发展里程碑人工智能50年2人工智能的诞生人工智能的诞生 1956年的Dartmouth会议,一个长达2个月的暑期研讨班,与会者有数学家、逻辑学家、认知学家、心理学家、神经生理学家、计算机科学家10人。会上Marvin Minsky的神经网络模拟器神经网络模拟器、John Mccarthy的搜索法搜索法、以及Herbert Simon和Allen Newell的“逻辑理论家逻辑理论家”成为3个亮点,分别讨论如何穿过迷宫、如何搜索推理和如何证明数学定理。在Dartmouth会议上
2、,John Mccarthy提出用“人工智能”作为这一交叉学科的名称。3杰出人物杰出人物 2020世纪世纪世纪世纪4040位图灵奖获得者中有位图灵奖获得者中有位图灵奖获得者中有位图灵奖获得者中有6 6位人工智能学者:位人工智能学者:位人工智能学者:位人工智能学者:Marvin Marvin MinskyMinsky(19691969年)年)年)年)John John MccarthyMccarthy(19711971年)年)年)年)Herbert SimonHerbert Simon和和和和Allen NewellAllen Newell(19751975年)年)年)年)Edward Edwa
3、rd FeigenbaumFeigenbaum和和和和RajRaj Reddy Reddy(19941994年)年)年)年)可见人工智能学科在信息科学中的地位。可见人工智能学科在信息科学中的地位。可见人工智能学科在信息科学中的地位。可见人工智能学科在信息科学中的地位。4时时间间国国家家姓姓名名主要贡献主要贡献1904俄国俄国巴甫洛夫(巴甫洛夫(Pavlov.I.P.18491936)提出了条件反射和信号学说提出了条件反射和信号学说1906意大利意大利高基高基(Golgi.C.18431926)神经系统的构造神经系统的构造西班牙西班牙卡哈尔卡哈尔(Cajal.S.R.18521934)1932英
4、国英国谢灵顿(谢灵顿(Sherrington.C.S.18571952)关于神经元的功能的研究关于神经元的功能的研究英国英国阿德里安(阿德里安(Adrian.E.D.18891977)1936英国英国代尔代尔(Dale.H.H.18751968)神经冲动的化学传递神经冲动的化学传递奥地利奥地利洛伊洛伊(Loewi.O18731961)1944美国美国厄兰格厄兰格(Erlanger.J18741965)单根神经纤维功能的研究单根神经纤维功能的研究美国美国伽塞尔伽塞尔(Gasser.H.S18881963)1949瑞士瑞士赫斯赫斯(Hess.WR18811973)间脑的机能,特别是对内脏活间脑的机
5、能,特别是对内脏活动的调节动的调节获得诺贝尔奖的脑科学与神经生物学家获得诺贝尔奖的脑科学与神经生物学家获得诺贝尔奖的脑科学与神经生物学家获得诺贝尔奖的脑科学与神经生物学家51963澳大利亚澳大利亚艾克尔斯艾克尔斯(Eccles.JC1903)神经元兴奋与抑制的离子机制神经元兴奋与抑制的离子机制英国英国霍奇金霍奇金(Hodgkin.AL1914)英国英国赫胥黎赫胥黎(Huxley.AF1917)1970英国英国卡兹卡兹(KatzB1911)神经末梢的化学递质的发现及递神经末梢的化学递质的发现及递质的储藏、释放、活等机制质的储藏、释放、活等机制的研究的研究瑞典瑞典欧拉欧拉(Euler.U.Svon
6、.19051983)美国美国阿克塞尔罗德阿克塞尔罗德(Axelrod.J1912)1977美国美国吉尔曼吉尔曼(Guillemin.R1924)下丘脑促垂体激素的研究下丘脑促垂体激素的研究美国美国沙利沙利(Schally.AV.1927)1981美国美国斯佩里斯佩里(Sperry.R.1913)关于大脑两半球功能特异性的研关于大脑两半球功能特异性的研究究2000美国美国卡尔松卡尔松(Carlsoon.A.1923)神经系统的信号传导神经系统的信号传导美国美国格林加德格林加德(Greengard.P.1925)美国美国坎德尔坎德尔(Kandel.E.R.1929)获得诺贝尔奖的脑科学与神经生物学
7、家(续)获得诺贝尔奖的脑科学与神经生物学家(续)获得诺贝尔奖的脑科学与神经生物学家(续)获得诺贝尔奖的脑科学与神经生物学家(续)6人工智能的顶尖人物人工智能的顶尖人物l lHerbert Simon19781978年获得诺贝尔经济学奖年获得诺贝尔经济学奖年获得诺贝尔经济学奖年获得诺贝尔经济学奖 建立了机器证明数学定理的启发式搜索法,建立了机器证明数学定理的启发式搜索法,建立了机器证明数学定理的启发式搜索法,建立了机器证明数学定理的启发式搜索法,提出有限理论对经济决策活动的影响提出有限理论对经济决策活动的影响提出有限理论对经济决策活动的影响提出有限理论对经济决策活动的影响lDaniel Kahn
8、eman20022002年获得诺贝尔经济学奖年获得诺贝尔经济学奖年获得诺贝尔经济学奖年获得诺贝尔经济学奖 研究不确定情况下的决策,解释人类决策研究不确定情况下的决策,解释人类决策研究不确定情况下的决策,解释人类决策研究不确定情况下的决策,解释人类决策行为,系统偏离基本概率理论和标准经济理行为,系统偏离基本概率理论和标准经济理行为,系统偏离基本概率理论和标准经济理行为,系统偏离基本概率理论和标准经济理论的原因。论的原因。论的原因。论的原因。7重要会议重要会议 1969年第一届国际人工智能联合会议年第一届国际人工智能联合会议(International Joint Conference on AI
9、)召开)召开,此后每两年开一次,成此后每两年开一次,成为人工智能界最高级别的学术盛会。为人工智能界最高级别的学术盛会。1979年成立美国人工智能联合会年成立美国人工智能联合会(American Association for Artificial Intelligence),到),到2004年年已经召开了第已经召开了第19届全国性会议,届全国性会议,8重要刊物重要刊物1970年起,年起,IJCAI定期出版:定期出版:International Journal of AI1979年起,年起,AAAI定期出版:定期出版:AI Magazine,9国内重要会议国内重要会议1981年成立中国人工智能学
10、会年成立中国人工智能学会(CAAI),今年),今年10月将召开第月将召开第11届全届全国人工智能学术年会(国人工智能学术年会(CAAI11)。)。1989年首次召开中国人工智能控制联合年首次召开中国人工智能控制联合会议(会议(CJCAI),至今也已召开),至今也已召开7次。次。10智能标准:图灵智能标准:图灵测试和对测试和对图图灵灵测试的理解测试的理解 如果一台机器的表现(如果一台机器的表现(Act)、反应)、反应(React)、以及相互作用(、以及相互作用(Interact),),都和有意识的人类个体一样,那么它就都和有意识的人类个体一样,那么它就应该被认为是有意识的,具有智能的。应该被认为
11、是有意识的,具有智能的。11代表著作:代表著作:由费根鲍姆主编的Computers and Thought是世界上第一本人工智能的经典专著,含21篇著名论文,1963年出版。80年代出版的1-4卷The Handbook of Artificial Intelligence是人工智能的杠鼎之作。12二、二、人工智能的理论、方法与成就人工智能的理论、方法与成就人工智能50年13符号主义方法符号主义方法l西蒙和纽厄尔为代表的物理符号系统假说(physical symbol system hypothesis)由一组称为符号的实体组成系统,这些符号可作为组分出现在另一符号实体中。任何时候系统内部均有
12、一组符号结构,以及作用在这些符号结构上生成其他符号结构的一组过程。任一物理符号系统如果是有智能的,则必能执行对符号的输入、输出、存储、复制、条件转移和建立符号结构这样6种操作。反之,能执行这6种操作的任何系统,也就一定能够表现出智能符号主义学派:14符号主义方法符号主义方法l认知基元是符号,智能行为通过符号操作来实现,以美国科学家Robinson提出的归结原理为基础,以Lisp和Prolog语言为代表l l着重问题求解中的启发式搜索和推理过程,在逻辑思维的模拟方面取得成功,如自动定理证明和专家系统。15符号主义方法符号主义方法l l1977年吴文俊院士给出了一类平面几何问题的机械化证明理论,在
13、计算机上证明了一大批平面几何定理。1984年科学出版社出版了他的几何定理机器证明的基本原理一书,被称为吴方法。16联结主义方法联结主义方法l lJ.J.Hopfield为代表的人工神经网络方法,思维的基元是神经元,把智能理解为相互联结的神经元竞争与协作的结果,其中以反向传播网络模型和Hopfield网络模型更为突出。着重结构模拟,研究神经元特征、神经元网络拓朴、学习规则、网络的非线性动力学性质和自适应的协同行为。17联结主义方法联结主义方法l1975年,John Holland提出遗传算法,模仿生物染色体中基因的选择(selection)、交叉(crossover)和变异(mutation)的
14、自然进化过程,通过个体结构重组,形成一代代新群体(populations),最终收敛于近似优化解。用于处理多变量、非线性、不确定、甚至混沌的大搜索空间的有约束的优化问题;18行为主义方法行为主义方法l以R.A.Brooks为代表。反馈是控制论中的基石,反馈是控制论中的基石,没有反馈就没有智能。强调智能系统与环境的交没有反馈就没有智能。强调智能系统与环境的交互,从运行的环境中获取信息(感知),通过自互,从运行的环境中获取信息(感知),通过自己的动作对环境施加影响;己的动作对环境施加影响;l控制论研究导致机器人和智能控制,机器人是“感知-行为”模式,是没有知识的智能,强调直觉和反馈的重要性;l智能
15、行为体现在系统与环境的交互之中,功能、结构和智能行为不可分割。195050年的成就年的成就l l 模式识别l l 知识工程l l 机器人20模式识别模式识别 模式通常具有实体的形式,如声音、图片、模式通常具有实体的形式,如声音、图片、图像、语言、文字、符号、物体、景象等等,图像、语言、文字、符号、物体、景象等等,可以用物理的、化学的、生物的传感器进行具可以用物理的、化学的、生物的传感器进行具体地采集和测量。人们在观察、认识事物和现体地采集和测量。人们在观察、认识事物和现象时,常常寻找它与其它事物和现象的相同与象时,常常寻找它与其它事物和现象的相同与不同之处,根据使用目的进行分类、聚类和判不同之
16、处,根据使用目的进行分类、聚类和判断,人脑的这种思维能力就构成了模式和识别断,人脑的这种思维能力就构成了模式和识别的能力。模式和类别分不开,识别和特殊分不的能力。模式和类别分不开,识别和特殊分不开,判断的结果常常是相对的,这就构成了模开,判断的结果常常是相对的,这就构成了模式识别研究的基本内容。式识别研究的基本内容。21模式识别模式识别 模式识别呈现多样性和多元化趋势,可以在不模式识别呈现多样性和多元化趋势,可以在不同的概念粒度上进行,其中生物特征识别成为模同的概念粒度上进行,其中生物特征识别成为模式识别的新高潮,包括语音识别、文字识别、图式识别的新高潮,包括语音识别、文字识别、图像识别、人物
17、景象识别、手语识别等;人们还要像识别、人物景象识别、手语识别等;人们还要求通过识别语种、乐种、方言来检索相关的语音求通过识别语种、乐种、方言来检索相关的语音信息,通过识别人种、性别、表情来检索所需要信息,通过识别人种、性别、表情来检索所需要的人脸图像;通过识别指纹(掌纹)、人脸、签的人脸图像;通过识别指纹(掌纹)、人脸、签名、虹膜、行为姿态识别身份。普遍利用小波变名、虹膜、行为姿态识别身份。普遍利用小波变换、模糊聚类、遗传算法、贝叶斯理论、支持向换、模糊聚类、遗传算法、贝叶斯理论、支持向量机等方法进行识别对象分割、特征提取、分类、量机等方法进行识别对象分割、特征提取、分类、聚类和模式匹配。聚类
18、和模式匹配。22模式识别模式识别l l小样本小样本l l非结构化非结构化l l高维、海量高维、海量l l非线性非线性l l无标志性样本无标志性样本模式识别是在统计分类的基础上发展起来的,当前的研究热点模式识别是在统计分类的基础上发展起来的,当前的研究热点是支持向量机(是支持向量机(SVMSVM)方法和流行)方法和流行(Manifold)(Manifold)学习方法,解决:学习方法,解决:23知识工程知识工程l l智能搜索引擎智能搜索引擎l l专家系统专家系统l l计算机视觉和图像处理计算机视觉和图像处理l l机器翻译和自然语言理解机器翻译和自然语言理解l l数据挖掘和知识发现数据挖掘和知识发现
19、以知识本身为处理对象,研究如何运用人工智能和软以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统,件技术,设计、构造和维护知识系统,24知识工程知识工程l l智能控制l l虚拟人l l仿生感知 l l人工生命以知识本身为处理对象,研究如何运用人工智能和软以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统,件技术,设计、构造和维护知识系统,25机器人机器人 机器人研究从机械手开始,是机械结构学、机器人研究从机械手开始,是机械结构学、传感技术和人工智能结合的产物,是一种能模传感技术和人工智能结合的产物,是一种能模拟人的行为的机械。拟人的行为的
20、机械。19481948年美国研制成功第一年美国研制成功第一代遥控机械手,代遥控机械手,1717年后第一台工业机器人诞生,年后第一台工业机器人诞生,可通过编程灵活改变作业程序。可通过编程灵活改变作业程序。6060年代人们把年代人们把机器人作为人工智能的载体,研究如何使机器机器人作为人工智能的载体,研究如何使机器人具有环境识别、问题求解以及规划能力。人具有环境识别、问题求解以及规划能力。8080年代,工业机器人产业得到巨大发展,如机器年代,工业机器人产业得到巨大发展,如机器人用于汽车工业的点焊、孤焊、喷涂、上下料人用于汽车工业的点焊、孤焊、喷涂、上下料等。等。9090年代后,装配机器及柔性装配技术
21、进入年代后,装配机器及柔性装配技术进入大发展时期。预计今年全球机器人将接近大发展时期。预计今年全球机器人将接近100100万台,其中日本就占万台,其中日本就占3535万台。万台。26机器人机器人l l第一代为程序控制机器人,或者以第一代为程序控制机器人,或者以“示教示教再现再现”方式,一次又方式,一次又一次学习后实现再现,代替人类从事笨重、繁杂与重复的劳动一次学习后实现再现,代替人类从事笨重、繁杂与重复的劳动l l第二代为自适应机器人,配备有相应的感觉传感器,尤其是视觉第二代为自适应机器人,配备有相应的感觉传感器,尤其是视觉传感器,能获取作业环境的简单信息,允许操作对象的微小变化,传感器,能获
22、取作业环境的简单信息,允许操作对象的微小变化,对环境具有一定适应能力对环境具有一定适应能力l l第三代为分布式协同机器人,装备有视觉、听觉、触觉多种类型第三代为分布式协同机器人,装备有视觉、听觉、触觉多种类型传感器,在多个方向平台上感知多维信息,并具有较高的灵敏度,传感器,在多个方向平台上感知多维信息,并具有较高的灵敏度,能对环境信息进行精确感知和实时分析,协同控制自己的多种行能对环境信息进行精确感知和实时分析,协同控制自己的多种行为,具有一定的自学习、自主决策和判断能力,能处理环境发生为,具有一定的自学习、自主决策和判断能力,能处理环境发生的变化,能和其它机器人进行交互。一年一度的机器人世界
23、杯足的变化,能和其它机器人进行交互。一年一度的机器人世界杯足球赛大大地促进了第三代机器人的研究。球赛大大地促进了第三代机器人的研究。27第一次:实现问题求解,代替人完成部分逻辑推理工作,如机器定理证明和专家系统。第二次:智能系统能够和环境交互,从运行的环境中获取信息,代替人完成包括不确定性在内的部分思维工作,通过自身的动作,对环境施加影响,并适应环境的变化。如智能机器人。第三次:智能系统具有类人的认知和思维能力,能够发现新的知识,去完成面临的任务,如基于数据挖掘的系统。人工智能三次飞跃人工智能三次飞跃28三、人工智能学科发展走向三、人工智能学科发展走向人工智能50年291)学科大交叉趋势l l
24、 哲学、数学、物理学l l 认知科学、认知心理学l l 脑科学、神经科学l l 生命科学、比较人类学l l 语言学l l 量子计算和生物计算30关于人类认知和智力的本质和规律l l 脑认知成像技术l l 大脑和智力的关系 l l 学习与记忆学习与记忆 美国的美国的“脑的十年脑的十年”计划、欧共体计划、欧共体“ECEC脑的脑的十年计划十年计划”、以及日本的、以及日本的“脑科学时代脑科学时代”计划计划包括知觉、注意、记忆、动作、语言、推理、思考、意识、情感、灵感、动机在内的各个层面的认知活动。312)不确定性人工智能l l 随机性l l 模糊性l l 定性、定量之间的映射l l 不协调性l l 不
25、完全性l l 非规范性3233复杂网络和复杂系统中的新发现l l 小世界模型l l 无尺(标)度特征l l 高集聚性l l 鲁棒性和脆弱性并存l l 不同尺(粒)度上的相似性3410 10 mm10 10 mm10 10 mm10 10 mm10 10 mm10 10 mm10 10 mm10 10 mm10 10 mm10 10 mm22221919121244-5-5-6-6-9-9-12-12-14-14-15-15宇宇观、宏观、介观、微观观、宏观、介观、微观35l 无序中的基本有序l 不确定性中的基本确定l 竞争中的协同l 复杂系统中的相似l 不完全性l 非规范性36l 2005年 世
26、界物理年 爱因斯坦3篇论文发表100周年纪念,物理学作为其他学科领域,尤其是认知科学中的基础性l 主观和客观、物质和概念、语言和思维、层次和模型、认知场等3)认知物理学)认知物理学37认知物理学 物理学对客观世界的认识,无论是力学、热物理、电磁学和近代物理,从粒子到宇宙,在不同尺度上都有模模型型、层层次次和和场场的理论。那么,人自身的主观认知和思维过程,从数据到信息到知识,是否也可以用模型、层次和场模型、层次和场来描述?38认知物理学的理想 求知是人的本能。人从自然界异化出来之后,便开始了对宇宙万物的认识活动,取得了惊人的成就,同时人们也开始了对自身认知机理的理解。这种主客观的认知活动有没有相似之处?20世纪的物理发展是简化归纳。知识形成的本质也是简化归纳。21世纪的认知和思维科学的发展,能不能把现代物理学中对客观世界的认知理论引伸到对主观世界的认知,不妨认为这是主客观一致的大统一理论梦想。39谢谢谢!谢!2005年6月10日40