《人教版七年级数学上册《一元一次方程》知识点详细梳理.pdf》由会员分享,可在线阅读,更多相关《人教版七年级数学上册《一元一次方程》知识点详细梳理.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版七年级数学上册一元一次方程知识点详细梳理 1 等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2 等式的性质:等式性质 1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质 2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3 方程:含未知数的等式,叫方程.4 一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是 1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x 是未知数,a、b 是已知数,且 a0).最简形式:ax=b(x 是未知数,a、b 是已知数,且 a0)注意:未知数在分母中时
2、,它的次数不能看成是 1 次。如xx31,它不是一元一次方程。5 解一元一次方程 方程的解:能使方程左右两边相等的未知数的值叫做方程的解;注意:“方程的解就能代入”验算!解方程:求方程的解的过程叫做解方程。等式的性质:(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;(2)等式两边都乘或除以同一个不等于 0 的数,所得结果仍是等式。6 移项 移项:方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。移项的依据:(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质 1;(2)系数化为 1 实际上就是对方程两边同时乘除,根据是等式的性质 2。移项的作用
3、:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并。注意:移项时要跨越“=”号,移过的项一定要变号。7 解一元一次方程的一般步骤:整理方程、去分母、去括号、移项、合并同类项、未知数的系数化为 1;(检验方程的解)。注意:去分母时不可漏乘不含分母的项。分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。解下列方程:(1)xx2434;(2))9(76)20(34xxxx;(3)3136521xxx;(4)35.0102.02.01.0 xx 8 用方程解决问题 列一元一次方程解应用题的基本步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。关
4、键在于抓住问题中的有关数量的相等关系,列出方程。解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系 9 列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利
5、用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.10 实际问题的常见类型:(1)行程问题:路程=时间速度,时间=速度路程,速度=时间路程(单位:路程米、千米;时间秒、分、时;速度米秒、米分、千米小时)(2)工程问题:工作总量=工作时间工作效率,工作时间工作总量工作效率 ;工作效率工作总量工作时间;工作总量=各部分工作量的和;(3)利润问题:利润=售价-进价,利润率=进价利润,售价=标价(1-折扣);(4)商品价格问题:售价=定价 折101,利润=售价-成本,%100成本成本售价利润率;(5)利息问题:本息和=本金+利息;利息=本金利率(6)比率问题:部分=全体比率
6、 全体部分比率 比率部分全体;(7)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(8)等积变形问题:长方体的体积=长宽高;圆柱的体积=底面积高;锻造前的体积=锻造后的体积 (9)周长、面积、体积问题:C圆=2R,S圆=R2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=(R2-r2),V长方体=abc,V正方体=a3,V圆柱=R2h,V圆锥=31R2h.11列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.