《有机化合物中的价键结构分析.pptx》由会员分享,可在线阅读,更多相关《有机化合物中的价键结构分析.pptx(131页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、化学键是化学家手中的金钥匙。-Pauling(美国)Linus Carl Pauling,19011994化学键的本质第1页/共131页在有机化合物分子中,组成分子的原子间以电子对互相结合在一起形成的键,称为共价键。正负电荷的相互吸引是化学成键、化学反应的内在驱动力第2页/共131页第一节 共价键理论价键理论和分子轨道理论共价键的两种模型:定域键和离域键 两种理论处理含定域电子的分子体系是所得结果相差不大第3页/共131页1.1 价键的形成可看作是原子轨道的重叠或电子配对的结果。成键的电子只处于形成共价键的两个原子之间。两原子如果都有未成键电子,并且自旋方向相反,就能配对成键。电子云重叠部分越
2、大,所形成的键越牢固。1、价键理论原子轨道:原子中能找到电子的区域,用波函数 表示。是对绕核电子的量子力学描述基本要点:第4页/共131页s轨道p轨道d轨道s,p,d原子轨道的形状、伸展方向1.2 共价键的饱和性和方向性如果一个原子的未成对电子已经配对,就不能再与其它的未成对电子配对。饱和性第5页/共131页方向性三个能量相等的P轨道第6页/共131页S轨道与P轨道重叠成键,S轨道必须沿着P轨道的对称轴重叠才能达到最大的交盖。P轨道S轨道P轨道对称轴第7页/共131页价键理论的局限:把成键电子描述成定域在两个原子之间,是一种定域的分子轨道理论。第8页/共131页2、分子轨道理论 分子轨道理论认
3、为,原子形成分子后,成键电子不是定域在特定原子间,而是分布在整个分子中运动着的。通过薛定谔方程(波动方程)可求出描述分子中电子运动状态的波函数,即分子轨道。成键电子按一定规则填充在这些能量不连续的分子轨道中。休克尔(德)的分子轨道法(HMO方法)量子化学所指的分子轨道不是指分子本身运动的轨道,而是分子中每个电子的运动状态。第9页/共131页缺点:将分子视为一个整体,某一电子的运动状态会受组成该分子的所有原子的共同影响,情况复杂,薛定谔方程求解困难。解决方法:将原子轨道进行线性组合,分子轨道数等于形成分子的原子轨道数,是守恒的。=C11+C22+Cnn C:原子轨道系数第10页/共131页如果两
4、个原子轨道的组合,则形成两个分子轨道:1=1+2 为成键轨道,两核间波函数增大,电子云出现几率增加,分子轨道能量比原子轨道低。2=1-2 为反键轨道,两核间波函数减小,电子云出现几率降低,分子轨道能量比原子轨道高。组成分子轨道的原子轨道能量要相近根据分子轨道对称性不同,分为轨道和轨道。电子云密度中心在两成键原子核的连线上,轨道电子云密度中心处于键轴的上下,轨道第11页/共131页第12页/共131页2.1 由p轨道组成的分子轨道位相一致的原子轨道之间的作用,形成成键轨道,位相相反的原子轨道之间的作用,形成反键轨道第13页/共131页HMO方法在处理共轭体系分子时,只把键看做分子骨架,而把电子看
5、做是围绕电子、内层电子和原子核的分子轨道。2.2 由p轨道组成的分子轨道第14页/共131页1,3-丁二烯:四个分子轨道为 1=1+2+3+4 2=1+2-3+4 3=1-2-3+4 4=1-2+3-4第15页/共131页1,3,5-己三烯 分子中六个p电子,可形成六个分子轨道 1=1+2+3+4+5+6 成键 2=1+2+3-4-5-6 成键 3=1+2-3-4+5+6 成键 4=1-2-3+4+5-6 反键 5=1-2+3+4-5+6 反键 6=1-2+3-4+5-6 反键第16页/共131页2.3 三个p轨道线性组合成三个分子轨道烯丙基正离子:三个分子轨道为 1=1+2+32=1-33=
6、1-2+3第17页/共131页2.4 环状共轭多烯 利用Frost圆圈法形象的描述含有n个碳的环状共轭多烯的分子轨道能级图。首先在圆中画一个n边正多边形,其中一个角处于最低点,而多边形的其他各角与圆接触的点表示出相应的分子轨道能级。第18页/共131页环丁二烯和苯的分子轨道非键轨道12 34123456苯的分子轨道:1,2,3为成键轨道,4,5,6为反键轨道,其中2与3以及 4与5为简并轨道。环丁二烯的分子轨道:1为成键轨道,4为反键轨道,2与3为简并的非键轨道。第19页/共131页每个sp3杂化轨道含1/4 s 成分和 3/4 p成分基态时碳原子的电子排布:1S22S22P23、杂化 仍然是
7、原子轨道,仅存在于成键过程中,有利于体系能量的降低。(1931年,鲍林)3.1 sp3杂化与四面体结构 等性杂化 成键时,通常遵守电子间排斥作用最小和成键最强原则第20页/共131页sp3杂化轨道形状碳原子的sp3杂化轨道键角为 109.5杂化轨道的角度函数在某个方向的值比杂化前的大得多,更有利于原子轨道间最大程度地重叠,因而杂化轨道比原来轨道的成键能力强.第21页/共131页sp3杂化未共用电子对N N的价电子层结构的价电子层结构:2S2S2 2 2P 2P3 3不等性sp3杂化NR3和R2O结构中 N和O为sp3不等性杂化第22页/共131页2s2p2p杂化1个 杂化轨道=1/3 s +2
8、/3 p3.2 sp2杂化与平面结构 C=C C=O C=N N=N双键为sp2杂化 另自由基与正碳离子的杂化多数情况下也为sp2杂化第23页/共131页余下一个未参与杂化的p轨道,垂直与三个 杂化轨道对称轴所在的平面。第24页/共131页3.3 sp杂化与线性结构 CC O=C=O CH2=C=CH2sp杂化1个sp 杂化轨道=1/2 s +1/2p第25页/共131页一个sp 杂化轨道 二个sp 杂化轨道 未参与杂化的两个p轨道的对称轴互相垂直且都垂直于sp杂化轨道对称轴所在直线。第26页/共131页乙炔分子形成ssp 键sps 键spsp 键两对pp 键碳碳三键周围的电子云第27页/共1
9、31页1、键长键长:形成共价键的两个原子之间的距离。等于成键两原子的共价半径之和。说明:键长反映共价键的类型和键的牢固程度。同一类的共价键在不同的化合物中可能稍有不同!第二节 共价键的键参数r1:A的范德华半径r2:A的共价半径r3:B的共价半径r4:B的范德华半径d:AB键长第28页/共131页一些共价键的键长第29页/共131页2、键角乙醚甲烷键角:两个以上原子和其他原子成键时,两个共价键之间的夹角。甲醛说明:键角反映了分子的空间结构,分子结构不同,键角有所改变。第30页/共131页键能:当A和B两个原子(气态)结合成A-B气态分子时放出的能量。解离能:使1mol A-B气态双原子分子的共
10、价键离解为气态原子时吸收的能量。Ed(kJmol-1)3、键能说明:键能表示键的牢固程度,键能越大,键越牢固。第31页/共131页 多原子分子的键能通常是同一类共价键的解离能的平均值。甲烷C-H键键能为414kJ.mol-1,是上述解离能的平均值。第32页/共131页一些共价键的键能说明:化学环境不同的相同共价键的键能是有差异的!第33页/共131页4、键矩与偶极矩电负性:原子在分子中吸引电子的能力 (1931年,鲍林)电离能和电子亲合能电能的综合因素非极性共价键:两相同原子组成的共价键极性共价键:不同原子组成的共价键第34页/共131页+-=3.57x10-30(C.m)1D=3.334x1
11、0-30(C.m)(德拜)有机化合物键矩:(0.43.5D)键的极性用键矩()来衡量,它是正或负电荷中心所带电量与它们之间距离的乘积:=q.d(C.m)第35页/共131页分子的极性用偶极矩表示:多原子分子偶极矩是各个共价键键矩的矢量和=0(C.m)=6.47x10-30(C.m)=3.28x10-30(C.m)键矩用于衡量共价键的极性,与化学性质有关;而偶极矩用于衡量分子的极性,与物理性质有关!第36页/共131页5、键的极化性与可极化度共价键在外界电场作用下,键的极性发生变化,产生了诱导偶极矩,称为键的极化性。键的极化性用可极化度(率)来衡量。它表示成键电子被成键原子核电荷约束的相对程度,
12、与许多因素有关:成键原子的体积:正比电负性:反比 C-I C-Br C-Cl C-F键的种类:键比键容易极化外加电场强度:正比无论键是否有极性,均有一定的极化度第37页/共131页共价键的极性取决于取代基的效应如取代羧酸的酸性:CH3COOH ClCH2COOH Cl2CHCOOH Cl3CCOOHpKa 4.76 2.86 1.29 0.65 取代基效应:分子中的某个原子或原子团对整个分子或分子中其它部分产生的影响第三节 取代基效应第38页/共131页取代基效应电子效应场效应空间效应诱导效应共轭效应超共轭效应(位阻效应)(,)(-,p-)(-,-p)空间传递的电子效应物理的相互作用第39页/
13、共131页 在有机化合物中,由于电负性不同的取代基的影响,引起成键电子云沿着键链按取代基的电负性所决定的方向偏移的效应称为诱导效应,用 I 表示。1、电子效应(Electronic effect):由于取代基的作用而导致的共有电子对沿共价键转移的结果。1.1 1.1 诱导效应诱导效应 (Inductive effect)(Inductive effect)第40页/共131页传递强度:与取代基的性质、数目及距离相关,距离越大,强度越弱。取代基的影响电子云密度分布不均匀沿分子链传递取代基性质决定传递方向诱导效应的相对强度:取决于取代基中心原子的电负性。+-第41页/共131页规则:a.同周期的原
14、子:b.同族的原子:F Cl Br I电负性:4.0 3.0 2.8 2.5 c.相同的原子:不饱和度越大,-I 效应越强d.带正电荷的取代基的 I 强带负电荷的取代基的+I 强+I-I第42页/共131页1.2 共轭效应(Conjugation)电子通过共轭体系的传递而引起分子性质的改变,称共轭效应。-共轭C1C2C3C4第43页/共131页p-共轭C3C2C1CH3HH+H第44页/共131页特点:分子中任何一个原子周围电子云密度变化,马上会引起其它部分的电子云密度的改变共轭效应不受传递距离的影响结构特征:单、重键交替共轭体系中所有原子共平面第45页/共131页苯酚分子中氧原子上的孤对电子
15、与苯环上的电子形成 p-共轭。结果:使羟基的邻、对位的碳原子 带有部分的负电荷。电子转移用弧形箭头表示Y为吸电子基团吸电子共轭效应(-C),X为供电子基团供电子共轭效应(+C).第46页/共131页共轭效应的强度取决于取代基中的中心原子的电负性和原子半径大小。电负性越大,C越强。-共轭体系:同周期元素,随原子序数增大,C 增强:相同的元素,带正电荷的原子,C效应较强:第47页/共131页p-共轭体系:+C:同周期元素,电负性越大,+C 效应越小+C:同族元素,原子半径越大,p 轨道与双键中的轨道重叠越困难,电子离域程度小,C 越小。共轭效应与诱导效应在一个分子中往往是并存的,有时两种作用的方向
16、是相反的.第48页/共131页静态时:(分子没有参加反应)I +C,吸电子基性质动态时:(分子处于反应中+C I,指导亲电物种进攻方向动态共轭效应在反应过程中起主导作用第49页/共131页1.3 超共轭效应(Hyperconjugation)当CH键与双键直接相连时,CH键的强度减弱,H原子的活性增加。羰基化合物的C 原子的H原子在取代反应中是活泼的第50页/共131页共轭:电子已经不再定域在原来的C、H两原子之间,而是离域在C3C2之间,使H原子容易离去。这种共轭强度远远弱于-及p-共轭。超共轭效应的作用:CCCHHHHHH第51页/共131页使分子的偶极矩增加:使正碳离子稳定性增加:在叔碳
17、正离子中CH键与空的p轨道具有9个超共轭效应,其结果:正电荷分散在3个碳原子上。第52页/共131页2、场效应(Field effect)(F效应)当分子中原子或原子团间相互作用,通过空间传递的电子效应 场效应。邻氯代苯丙炔酸:pKa:大小场效应是依赖分子的几何构型的。Cl-产生供电场,不利于H的离去第53页/共131页3、空间效应(Steric effect)分子内或分子间不同取代基相互接近时,由于取代基的体积大小、形状不同,相互接触而引起的物理的相互作用 空间效应(位阻效应)。空间效应的作用:3.1 化合物(构象)的稳定性第54页/共131页3.2 对化合物酸碱性的影响pKa1 R2NH
18、RNH2 NH3当它与体积较大的Lewis 酸作用时,碱性强度顺序为:R3N R2NH RNH2 NH3两者在相互接近过程中,基团位阻导致相互排斥作用F-张力(前张力),表现为对反应的阻碍作用。2.6-二甲基吡啶几乎不与R3B作用第57页/共131页SN1反应形成正碳离子的一步 键角的变化缓解了基团的拥挤程度 来自于离去基团背后的张力B-张力(后张力),表现为对反应的促进作用。sp3四面体 sp2平面三角型卤代环丙烷离解速度慢环的键角角张力(Angle Strain)第58页/共131页第四节 共振论 共振论代表价键理论的一种延伸,它用来处理一些复杂的分子体系,如具有共轭结构的分子,它们能画出
19、不止一种可能的结构。20世纪30年代,Pauling提出一种分子结构理论-共振论第59页/共131页4.1 共振论共振杂化体是关于含有非定域键的分子的真实结构的一种表示法,是画出数个可能极限式结构,并假定真实分子为它们的共振杂化体。这些极限式仅存在于纸面上,它们是人们的设想。分子不是在它们之间的迅速转变,也不是某些分子具有一个极限式,而另外一些分子具有另一个极限式。物质的全部分子具有相同的结构,这个结构在所有时间都是一样的,并且为所有极限式的加权平均值。第60页/共131页4.2 共振结构的书写规则a、在所有的共振结构式中,原子核的相对位置是固定不变的,只是核间电子分布不同,即只允许键和电子移
20、动 b、共振结构必须符合价键理论例如,在任何极限式中碳原子只能为四价,氢原子的价电子数不得超过2,第二周期元素最多只能有8个价电子。第61页/共131页c、参与共振的所有原子必须位于同一平面或近似同一平面。满足p轨道最大程度重叠。d、共振结构必须具有相同数目的未配对电子 (II)式为双游离基,(II)式与(I)式所含有的未配对电子数目不同,因此(II)式不是乙烯的共振结构。第62页/共131页 有一些结构比另一些更为合理。最接近于真实分子的结构是具有下列特点的结构:1、共价键的数目最多;2、电荷分离的共振式稳定性下降;3、任何负电荷都处于电负性最大的原子上 (或任何正电荷都在电正性最大的原子上
21、)。e、共振结构的能量应彼此大致相同第63页/共131页4.3 共振效应(与共轭效应本质上一至,都是通过电子体系传递的电子效应)电子云密度在分子的某一处减少,相应地在别处增大的现象,为共振效应。苯胺的苯环上邻、对位电子云密度增加第64页/共131页共振的位阻效应当组成分子的原子不在同一平面上时,共振效应降低或消失。a=0.145 纳米,b=0.135 纳米只有对位硝基上的氧原子与芳环共平面 并发生共振。第65页/共131页第五节第五节 芳香性和休克尔规则芳香性和休克尔规则 一、芳香性的定义 早期,考虑动力学稳定性,取代反应比加成反应更容易发生;后来,依靠热力学稳定性,以共轭能的大小来量度;近期
22、,用光谱及磁的标准,磁有向性在平面电子体系中能受感应,并可用质子磁共振光谱中位移到较低的场来鉴定或借反磁性的灵敏度上升的测定。另一种物理标准是整个芳香体系具有相同键长和共平面的特性。第66页/共131页二、休克尔休克尔(Hckel)规则 2.1 Hckel规则 Hckel从简单分子轨道理论研究入手,提出含有4n+2个电子的平面共轭单环化合物应具芳香性。平面单环体系的分子轨道能级图特征:a.具有一个最低能级的成键轨道,b.具有能级较高的成对简并轨道,c.具有能量最高的反键轨道,当分子轨道数为偶数:单一最高能级轨道 当分子轨道数为奇数:一对简并的最高能级轨道第67页/共131页:原子轨道能量(库仑
23、积分),:两原子轨道相互作用能量(交换积分),为负值不同电子体系环状CnHn的分子轨道能级图第68页/共131页Frost使用做图法成功地表示了平面单环体系的分子轨道能级图,也表示了休克尔方程第69页/共131页闭壳结构、稳定、具芳香性 开壳结构、不稳定第70页/共131页2.2 Hckel规则的修正Hckel规则的局限:仅适用于n小于等于6的单环平面共轭分子(1)周边修正法:忽略环中间的桥键,直接计算环周围形成的离域电子数来判断芳香性。X 条件:桥键不参与外围共轭,仅起到保持平面构型作用时,适用。第71页/共131页(2)双键修正法:忽略双键在芳环体系中的影响,直接考虑其芳香性周边的电子数不
24、符合4n+2规律有芳香性第72页/共131页(3)单键修正法:忽略单键在芳环体系中的影响,直接考虑其芳香性有芳香性第73页/共131页判断芳香性:是芳香性化合物不是芳香性化合物是芳香性化合物第74页/共131页三、反芳香性、非芳香性和同芳香性 3.1 反芳香性 某些具有4n 电子的环状共轭体系,虽然有 电子离域,但却使分子体系的能量升高,并较其开链体系分子的性质还活泼,此种体系是反芳香性的。电子在分子轨道能级上的填充结果形成开壳结构的双自由基,体系不稳定。第75页/共131页3.2 非芳香性 某些具有4n 电子的环状体系,与其相应的开链物的性质相比,在热力学上既不表现活泼,又不表现稳定,此种体
25、系是非芳香性的。非平面结构第76页/共131页3.3 同芳香性 同芳香性:在某些环系分子或离子中无正统的芳香体系的骨架,也无连续的P电子轨道排列。但当体系由于不相邻碳上P轨道部分重叠且具有4n+2个电子的环状排列时也会呈现出一定的芳香稳定性。共轭、空间均共轭 第77页/共131页在同芳香体系中,外加原子的存在将破坏离域体系的物理连续性却不破坏离域 体系。例如:环辛四烯溶于浓硫酸发生质子化,生成同芳香性正离子:(阳离子同芳性化合物)越过一个饱和碳原子形成的稳定的环状共轭体系。第78页/共131页这种越过一个碳原子的同芳香性叫单同芳香体系,依次有二个或三个的同共轭则分别叫双同或三同芳香体系。环壬三
26、烯 三同芳香性第79页/共131页插入基团之后的C60中性同芳性化合物半瞬烯第80页/共131页在(II)中双键氢的活泼性是(III)中双键氢的10倍。主要由于所形成的负离子(I)为双同芳香体系。阴离子同芳性化合物第81页/共131页四、非苯芳烃的类型4.1 含有六个电子体系的芳香化合物 i)六元环第82页/共131页ii)五元环 杂芳香化合物分为两类:一类利用芳香体系中的杂原子的未共享电子对;一类不利用此未共享电子对。第83页/共131页iii)七元环和八元环 平 面:反芳香性非平面:非芳香性芳香性鎓离子第84页/共131页-50oC稳定存在,高于-30oC不稳定第85页/共131页4.2
27、含非六电子的芳香体系 i)含二个电子的体系-H-第86页/共131页第87页/共131页ii)含十个电子的体系(1)10-轮烯 没有芳香性A是全顺式,B是反,顺,顺,顺,顺式,C是反,顺,反,顺,顺式;在A和B中存在角张力,在C中,环内两个氢的排斥力影 响分子的稳定性,使之不具芳香性;10-轮烯容易受热环化为双环体系。第88页/共131页用一个原子代替两个氢原子得1,6-桥-10-环共轭多烯,有芳香性:第89页/共131页iii)大于10-轮烯的例子 14-轮烯 具有芳香性第90页/共131页第91页/共131页18-轮烯 第92页/共131页22-轮烯已被合成,具有芳香性。某些26-轮烯为平
28、面的,有芳香性,而其它26-轮烯和30-轮烯是非平面的,没有芳香性。大环难于达到充分有效的芳香化合物那样的电子非定域。第93页/共131页传统的芳香性判据:A、键长趋于平均化B、平面环状分子C、化学稳定性D、能发生芳香取代反应关于芳香性定义的讨论第94页/共131页当代芳香性判据的讨论主要围绕四个方面:A、能量上,额外的由电子离域产生的稳定化作用B、几何构型上,键长平均化与平面结构C、化学性质上,D、分子的磁学性质上,产生抗磁环流逐渐被舍弃 普遍应用、最有前途的方法 三维芳香性、Y-芳香性 第95页/共131页“分类和理论本身并不是目的。如果它们能够激发新的工作,创造新的化合物,它们就是好的;
29、如果不能就是没有意义的。”(Classification and theory are not ends in themselves.If they generate new experimental work,new experimental work,new compounds,they are good;if they are sterile-they are bad.)E.D.Bergmann 1970,Israel第96页/共131页第97页/共131页第98页/共131页第99页/共131页2,6-Diazasemibullvalene12345678SemibullvaleneN
30、N12345678半瞬烯氮杂半瞬烯半瞬烯、氮杂半瞬烯第100页/共131页半瞬烯的合成COT第101页/共131页Zhang,S.;Wei,J.;Zhan,M.;Luo,Q.;Wang,C.;Zhang,W.-X.;Xi,Z.J.Am.Chem.Soc.2012,134,11964.(JACS spotlight)氮杂半瞬烯的合成第102页/共131页第103页/共131页第104页/共131页第105页/共131页第106页/共131页单键键长:0.154 nm双键键长:0.134 nm 碳原子的范德华半径:0.170nm结构研究第107页/共131页Aza-Semibullvalene:T
31、he First X-ray Structure第108页/共131页氮杂半瞬烯的反应加热异构化第109页/共131页亲核取代第110页/共131页加成反应第111页/共131页第六节 比共价键弱的作用 一、氢键 8-40 kJ/mol,是分子簇产生的驱动力 1.氢键的形成 当H原子与电负性大、原子半径小的原子X以共价键结合成分子时,H受X原子影响,可以与另一个电负性大原子半径小且外层有孤对电子的Y原子结合形成X-HY结构,H与Y原子之间的静电吸引作用称为氢键。共价键的键能:200-400 kJ/mol分子间的静电引力:即范德华力,0.4-4 kJ/mol,如偶极-偶极间、诱导偶极-诱导偶极间
32、的吸引力第112页/共131页2.氢键的强弱 a、取决于X、Y原子的电负性与原子半径大小 例:Cl 与 N 电负性相近,但Cl的原子半径大,不能形成有效的氢键。氢键的键长:一般指X-HY之间的距离,大约0.3 nm氢键的键能:8-40 kJ/mol 特例:F-H-F-为210 kJ/molX-HYb、随着XH酸性和Y碱性的增强而增强第113页/共131页3.氢键的饱和性和方向性 当X-HY形成氢键,第二个Y靠近则受到强烈的排斥,因此只能与一个Y结合。以H为中心 X-HY 尽可能的排在一条直线上,此时X与Y距离最远,斥力最小,形成的氢键最稳定。4.分子内氢键 分子内氢键不在一条直线上,有效的分子
33、内氢键一般可形成稳定的五、六元环。例:乙二醇第114页/共131页5.氢键对物理性质的影响 影响熔沸点:分子间氢键沸点高,分子内氢键沸点低 影响溶解度:分子间氢键易溶于水,分子内氢键不易 溶于水而易溶于非极性溶剂 例如:对硝基苯酚 邻硝基苯酚第115页/共131页6.氢键在有机化学中的应用、色谱法分离有机化合物 以苯为溶剂,使异构体通过硅胶,凡能形成分子间氢键的化合物容易被吸附,凡能形成分子内氢键的不易被吸附,从而达到分离目的 例如:1-羟基-9,10-蒽醌 与 2-羟基-9,10-蒽醌 第116页/共131页、对IR的影响 氢键的形成会使O-H或N-H键的特征频率减小例如:O-H键的特征振动
34、频率为3600-3650cm-1,而形成O-HO键之后,O-H键略增长,而特征频率则减小到3500-3600cm-1、对酸性的影响例如:邻羟基苯甲酸比苯甲酸酸性强18倍 第117页/共131页、对分子稳定构象的影响 例如:乙二醇对位交叉式与邻位交叉式的稳定比较第118页/共131页二、-相互作用检测手段:NMR技术,化学位移的改变、NOE效应等第119页/共131页三、加合化合物四大类:1、电子授受体复合物(EDA)Electron DonorAcceptor Complexes检测手段:电子光谱,通常有可见吸收稳定的固体在加合化合物中,起始原料的分子保持一定的完整性,通过弱键将两个或多个分子
35、结合在一起。第120页/共131页2、冠醚类复合物 Crown Ether Complexes12-冠-4 识别Li+18-冠-6识别K+冠醚是包含多个氧原子的大环化合物,可与正离子形成复合物 主体:冠醚 客体:离子,通常为金属离子空穴尺寸决定主客体的结合情况第121页/共131页3、包含化合物-环糊精在主客体之间没有成键,只有范德华力。第122页/共131页4、索烃 包含两个或以上独立的部分,它们不通过任何价键互相成键。第123页/共131页第七节 互变异构定义:分子之间的相互转变。对于一些化合物而言,由两个或更多个结构不同的化合物形成快速互变平衡的混合物。易于转变、迅速达到平衡酮式 烯醇式
36、第124页/共131页强调:互变异构与共振的区别互变异构体:混合物,异构体实际存在,相互转 变,平衡箭号共振杂化体:杂化体非真实存在,其对分子结 构的贡献是每个杂化体的加权平均,双箭头箭号第125页/共131页一些羰基化合物的烯醇式含量结构的影响烯醇双键与重建共轭形成分子内氢键第126页/共131页练习1第127页/共131页练习2-第128页/共131页方酸在水中完全电离时(电离2个质子)的酸性与硫酸相当,请解释之。方酸的结构:练习3注:练习1-3答案参考汪秋安的高等有机化学第129页/共131页练习4注:练习4答案参考荣国斌的高等有机化学第130页/共131页感谢您的观看!第131页/共131页