《带电粒子在有界磁场中运动的临界问题..doc》由会员分享,可在线阅读,更多相关《带电粒子在有界磁场中运动的临界问题..doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、带电粒子在有界磁场中运动的临界问题 2011-12-15 14:02:32| 分类: 高三物理 | 标签: |字号大中小 订阅“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图动态分析找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了这一般都不难。) 二、常见题型(B为磁场的磁
2、感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大? 分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360范围内发射质量为m、电量为e、速度为v
3、0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=_,打在O点左侧最远距离OQ=_。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。粒子入射方向在与磁场B垂直的平面
4、内,且散开在与PC夹角为的范围内,则在屏MN上被粒子打中的区域的长度为( ) A B C D 分析:如图6所示,打在屏上距P最远的点是以O1为圆心的圆与屏的交点,打在屏上最近的点是以O2或O3为圆心的圆与屏的交点(与例2相似,可先作出一系列动态圆)。故答案选“D”。 第三类问题: 例3(2009年山东卷)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子。在03t0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影
5、响)。 已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。上述m、q、l、t0、B为已知量。(不考虑粒子间相互影响及返回极板间的情况) (1)求电压U0的大小。 (2)求t0时刻进入两板间的带电粒子在磁场中做圆周运动的半径。 (3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。 图丙 分析:粒子进入电场做类平抛运动,由平抛运动规律即可求得偏转电压U0;t=t0时刻进入的粒子先做类平抛运动,t0后沿末速度方向做匀速直线运动,利用相应规律可求得射出电场的速度大小,进入磁场后做匀速圆周运动,洛仑兹力提供向心力,可求提半径R;2t0时刻进入的带电粒子加速时间最长(如图
6、丙所示),加上此时粒子进入磁场是向上偏转,故运动时间最短,同样应用类平抛运动规律和圆周运动规律,即可求得此最短时间。 第四类问题: 例4如图7所示,磁感应强度大小B=015T、方向垂直纸面向里的匀强磁场分布在半径R=010m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点O,右端跟荧光屏MN相切于x轴上的A点。置于原点的粒子源可沿x轴正方向射出速度v0=30106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=10108C/kg。现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90,求此过程中粒子打在荧光屏上离A的最远距离。 分析:本题可先设想磁场是无界的,那么粒子在磁场中运动
7、的一段圆弧如图8中的弧OE(半径r=2R=020m,圆心为O),现在圆形磁场以O为轴在旋转相当于直径OA也在旋转,当直径OA旋转至OD位置时,粒子从圆形磁场中离开射向荧光屏MN时离A有最远距离(落点为F)。图中OOD为等边三角形,FD与OO2延长交于C点,图中=60,。 练习:如图9所示,一个质量为m,带电荷量为q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从x轴上的b点穿过,其速度方向与x轴正方向的夹角为30,粒子的重力可忽略不计,试求: (1)圆形匀强磁场区域的最小面积;(2)粒子在磁场中运动的时间;(3)b到O的距离。
8、 分析:如图10,过b点作速度的反向延长线交y轴于C点,作OCb的角平分线交x轴于O1,再以O1为圆心、以O1O为半径画弧,与直线Cb相切于点A,粒子运动的轨迹即为OAb,圆形磁场即为以OA为直径的圆,利用相关物理公式及几何知识不难计算出本题的结果。 第五类问题: 例5电子质量为m,电荷量为e,从坐标原点O处沿xOy平面射入第一象限,射入时速度方向不同,速度大小均为v0,如图11所示。现在某一区域加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度为B,若这些电子穿过磁场后都能垂直射到荧光屏MN上,荧光屏与y轴平行,求:(1)荧光屏上光斑的长度;(2)所加磁场范围的最小面积。 分析:本题可先作
9、出这些射入第一象限的电子做圆周运动的轨道圆心的集合,必在弧O1O2上(如图12),然后设想以该弧上的各点(如图12中的O2等四点)为圆心作出粒子运动的轨迹,最终垂直射到MN上的PQ间,所以荧光屏上光斑的长度即为PQ=R=mv0/eB;所加磁场范围即为图中由弧OO4O3O所围的区域,其中弧O3O4可看成是由弧O1O2向上平移R得到的。 练习:例5若改为“磁场方向垂直于xOy平面向里,荧光屏MN移至y轴右侧,”其他条件不变,情况又怎样呢?读者可试作分析。(所加磁场的最小范围为一“树叶”形状) 综合以上题型,我们可以看到,这些问题的解答很能体现学生的分析思维能力以及想象能力,要求学生能够由一条确定的
10、轨迹想到多条动态轨迹,并最终判定临界状态,这需要在平时的复习中让学生能有代表性地涉猎一些习题,才能在高考应试中得心就手,应对自如。例析用圆心轨迹确定带电粒子在磁场中运动区域问题 同种带电粒子从同一点以相同速率、沿不同方向进入同一匀强磁场中,粒子可能达到的区域的确定是教学中常遇, 学生感到棘手, 高考又考查的问题。现就此类问题举例分析。题目1 (2005年全国高考) 如图1, 在一水平放置的平板MN 的上方有一匀强磁场,磁感应强度的大小为B , 磁场方向垂直纸面向里,许多质量为m、带电荷量为+ q的粒子,以相同的速率v0沿位于纸面内的各个方向,由小孔O射入磁场区域。不计重力,不计粒子间的相互影响
11、。图2中阴影部分表示带电粒子可能经过的区域,其中r =m v0 /B q,哪个图是正确的( ) 析与解依据题意, 所有带电粒子在磁场中做圆周运动的半径相同r = m v0 /B q所以,在纸面内由O点沿不同方向入射的带电粒子作圆周运动的圆心轨迹是以O 为圆心, r为半径的圆周(A 图中虚线圆示) 。又因为带电粒子带正电、进磁场时只分布在以ON和OM为边界的上方空间,而向心力由洛仑兹力提供, 它既指向圆心又始终垂直速度,可确定:圆心轨迹只能是A 图中虚线圆直径分隔的左半边虚线圆周;再以A 图中左半虚线圆上各点为圆心、以r为半径作圆, 圆周在磁场中所能达到的区域应为A图阴影区。所以A图正确。题目2
12、如图3 所示, 有许多电子(每个电子的质量为m , 电量为e) 在xOy平面内从坐标原点O 不断地以相同大小的速度v0 沿不同方向射入第一象限。现加上一个方向向里垂直于xOy平面、磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴并向x轴的正方向运动。试求符合该条件的磁场的最小面积。析与解因为所有电子都在匀强磁场中作半径为r = m v0 /B e的匀速圆周运动。而沿y轴的正方向射入的边缘电子需转过1 /4圆周才能沿x轴的正方向运动,它的轨迹应为所求最小面积磁场区域的上边界如图中弧线a,其圆心在垂直入射速度的x轴上O1 ( r , 0) 。现设沿与x轴成任意角(0 90) 射入
13、的电子在动点p离开磁场。这些从O点沿不同方向入射的电子做圆周运动的圆心O到入射点O的距离又都为半径r。所以, O形成一个以入射点O (即坐标原点) 为圆心、r为半径的1 /4圆弧轨迹如图3中弧线c。根据题目要求,各电子射出磁场时速度v要为平行x轴的正方向。故由做圆周运动的物体的圆心又应在垂直出射速度的直线上可知,从不同点p射出的电子的圆心O又必在对应出射点p的正下方, 即曲线c上各点到对应正上方出射点p的距离也都等于r;因此将1 /4圆弧轨迹c沿y 轴正向平移距离后如图中弧线b,弧线b就是各出射点p的轨迹,它实际是以O2 (0 , r) 为圆心,半径为r的1 /4圆弧; 既然点p是出射点- -
14、 即磁场的下边界,故弧线b应为所求最小面积磁场区域的下边界。所以,所求面积为图中弧线a与b所围阴影面积。由几何得: “带电粒子在磁场中的圆周运动”解析 2011-12-15 13:58:53| 分类: 高三物理 | 标签: |字号大中小 订阅处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动
15、中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。【例1】图示在y0,0x0,xa的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值已知速度最大的粒子在0xa的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。试求
16、两个荧光屏上亮线的范围(不计重力的影响)。 解析:粒子在磁感应强度为B的匀强磁场中运动半径为: 速度小的粒子将在xa的区域走完半圆,射到竖直屏上。半圆的直径在y轴上,半径的范围从0到a,屏上发亮的范围从0到2a。 轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在D点相切(虚线),OD=2a,这是水平屏上发亮范围的左边界。 速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C和,C在y轴上,有对称性可知在x=2a直线上。 设t1为粒子在0xa的区域中运动的时间,由题意可知 由此解得: 由式和对称性可得 所以 即弧长AP为1/4圆周。因此,圆
17、心在x轴上。 设速度为最大值粒子的轨道半径为R,有直角可得 由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标 四、带电粒子在有界磁场中的极值问题 寻找产生极值的条件:直径是圆的最大弦;同一圆中大弦对应大的圆心角;由轨迹确定半径的极值。 有一粒子源置于一平面直角坐标原点O处,如图所示相同的速率v0向第一象限平面内的不同方向发射电子,已知电子质量为m,电量为e。欲使这些电子穿过垂直于纸面、磁感应强度为B的匀强磁场后,都能平行于x轴沿+x方向运动,求该磁场方向和磁场区域的最小面积s。 解析:由于电子在磁场中作匀速圆周运动的半径Rmv0/Be是确定的,设磁场区域足够大,作出电子可能的运动轨
18、道如图所示,因为电子只能向第一象限平面内发射,所以电子运动的最上面一条轨迹必为圆O1,它就是磁场的上边界。其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O1O2On。由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识有电子的飞出点必为每条可能轨迹的最高点。如对图中任一轨迹圆O2而言,要使电子能平行于x轴向右飞出磁场,过O2作弦的垂线O2A,则电子必将从点A飞出,相当于将此轨迹的圆心O2沿y方向平移了半径R即为此电子的出场位置。由此可见我们将轨迹的圆心组成的圆弧O1O2On沿y方向向上平移了半径R后所在的位置即为磁场的下边界,图中圆弧OAP示。综上所述,要求的磁场的最小区域为
19、弧OAP与弧OBP所围。利用正方形OO1PC的面积减去扇形OO1P的面积即为OBPC的面积;即R2-R2/4。根据几何关系有最小磁场区域的面积为S2(R2-R2/4)(/2 -1)(mv0/Be)2。 五、带电粒子在复合场中运动问题 复合场包括:磁场和电场,磁场和重力场,或重力场、电场和磁场。有带电粒子的平衡问题,匀变速运动问题,非匀变速运动问题,在解题过程中始终抓住洛伦兹力不做功这一特点。粒子动能的变化是电场力或重力做功的结果。 (07四川)如图所示,在坐标系Oxy的第一象限中存在沿y轴正方形的匀强电场,场强大小为E。在其它象限中存在匀强磁场,磁场方向垂直于纸面向里。A是y轴上的一点,它到座
20、标原点O的距离为h;C是x轴上的一点,到O点的距离为l,一质量为m、电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入大磁场区域,并再次通过A点。此时速度方向与y轴正方向成锐角。不计重力作用。试求: (1)粒子经过C点时速度的大小合方向; (2)磁感应强度的大小B。 解析:(1)以a表示粒子在电场作用下的加速度,有 加速度沿y轴负方向。设粒子从A点进入电场时的初速度为v0,由A点运动到C点经历的时间为t,则有 由式得 设粒子从点进入磁场时的速度为v,v垂直于x轴的分量 v1 由式得 v1 设粒子经过C点时的速度方向与x轴的夹角为,则有 tan 由式得 (2)粒子
21、经过C点进入磁场后在磁场中作速率为v的圆周运动。若圆周的半径为R,则有 设圆心为P,则PC必与过C点的速度垂且有R。用表示与y轴的夹角,由几何关系得 由式解得 R 由式得 B 六、带电粒子在磁场中的周期性和多解问题 多解形成原因:带电粒子的电性不确定形成多解;磁场方向不确定形成多解;临界状态的不唯一形成多解,在有界磁场中运动时表现出来多解,运动的重复性形成多解,在半径为r的圆筒中有沿筒轴线方向的匀强磁场,磁感应强度为B;一质量为m带电+q的粒子以速度V从筒壁A处沿半径方向垂直于磁场射入筒中;若它在筒中只受洛伦兹力作用且与筒壁发生弹性碰撞,欲使粒子与筒壁连续相碰撞并绕筒壁一周后仍从A处射出;则B
22、必须满足什么条件? 带电粒子在磁场中的运动时间分析:由于粒子从A处沿半径射入磁场后必作匀速圆周运动,要使粒子又从A处沿半径方向射向磁场,且粒子与筒壁的碰撞次数未知,故设粒子与筒壁的碰撞次数为n(不含返回A处并从A处射出的一次),由图可知其中n为大于或等于2的整数(当n1时即粒子必沿圆O的直径作直线运动,表示此时B0);由图知粒子圆周运动的半径R,再由粒子在磁场中的运动半径可求出。 粒子在磁场中的运动周期为,粒子每碰撞一次在磁场中转过的角度由图得,粒子从A射入磁场再从A沿半径射出磁场的过程中将经过n+1段圆弧,故粒子运动的总时间为:,将前面B代入T后与共同代入前式得。 练习 1一质量为m,电量为
23、q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它运动的平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是() ABCD 2(07宁夏)在半径为R的半圆形区域中有一匀强磁磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(APd)射入磁场(不计重力影响)。 如果粒子恰好从A点射出磁场,求入射粒子的速度。 如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为(如图)。求入射粒子的速度。 3(新题)如图以ab为边界的二匀强磁场的磁感应强度为B12B2,现有一质量为m带电+q的粒子从O点以初速度V0沿垂直于ab方向发射;在图中作出粒子运动轨迹,并求出粒子第6次穿过直线ab所经历的时间、路程及离开点O的距离。(粒子重力不计) 4一质量m、带电q的粒子以速度V0从A点沿等边三角形ABC的AB方向射入强度为B的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC射出,求圆形磁场区域的最小面积。 5如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成角的速度V0垂直射入磁场中;要使粒子必能从EF射出则初速度V0应满足什么条件?EF上有粒子射出的区域? 参考答案: 1AC 2 3 4 5