《2022年广东汕头中考数学真题及答案.pdf》由会员分享,可在线阅读,更多相关《2022年广东汕头中考数学真题及答案.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 2022 年广东汕头中考数学真题及答案 一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的 1|2|()A2 B2 C12 D12 2计算22()A1 B2 C2 D4 3下列图形中有稳定性的是()A三角形 B平行四边形 C长方形 D正方形 4如题 4 图,直线 a/b,1=40,则2=()A30 B40 C50 D60 5如题 5 图,在ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A14 B12 C1 D2 6在平面直角坐标系中,将点(1,1)向右平移 2 个单位后,得到的点的坐标是()A(3,1)B(1,
2、1)C(1,3)D(1,1)7书架上有 2 本数学书、1 本物理书从中任取 1 本书是物理书的概率为()A14 B13 C12 D23 8如题 8 图,在ABCD 中,一定正确的是()AAD=CD BAC=BD CAB=CD DCD=BC 9点(1,1y),(2,2y),(3,3y),(4,4y)在反比例函数4yx图象上,则1y,2y,3y,4y中最小的是()A1y B2y C3y D4y 10水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2r下列判断正确的是()A2 是变量 B是变量 Cr是变量 DC是常量 参考答案:题号 1 2 3 4 5 6 7 8 9 10
3、 答案 B D A B D A B C D C 二、填空题:本大题共 5 小题,每小题 3 分,共 15 分.11sin 30=_ 12单项式 3xy的系数为_ 13菱形的边长为 5,则它的周长为_ 14若x=1 是方程220 xxa的根,则a=_ 15扇形的半径为 2,圆心角为 90,则该扇形的面积(结果保留)为_ 参考答案:题号 11 12 13 14 15 答案 12 3 20 1 三、解答题(二):本大题共 3 小题,每小题 8 分,共 24 分 16解不等式组:32113xx 参考答案:32113xx 由得:1x 由得:2x 不等式组的解集:12x 17先化简,再求值:211aaa,
4、其中a5 参考答案:原式=(1)(1)1211aaaaaaa 将a5 代入得,21 11a 18如题 18 图,已知AOCBOC,点P在OC上,PDOA,PEOB,垂足分别为D,E 求证:OPDOPE 参考答案:证明:PDOA,PEOB PDOPEO=90 在OPD和OPE中 PDOPEOAOCBOCOPOP OPDOPE(AAS)四、解答题(二):本大题共 3 小题,每小题 9 分,共 27 分 19 九章算术是我国古代的数学专著,几名学生要凑钱购买 1 本若每人出 8 元,则多了 3 元;若每人出 7 元,则少了 4 元问学生人数和该书单价各是多少?参考答案:设学生人数为 x 人 8374
5、xx 7x 则该书单价是8353x(元)答:学生人数是 7 人,该书单价是 53 元 20物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足看数关系y=kx+15下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系 x 0 2 5 y 15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为 20cm 时,求所挂物体的质量 参考答案:(1)将2x 和19y 代入y=kx+15 得 19=2k+15 解得:2k y与x的函数关系式:y=2x+15(2)将20y 代入y=2x+15 得 20=2x+15 解得:2.5x 当弹簧长度为 20cm 时,求所挂物体的质
6、量是2.5kg 21为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了 15 名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图 (2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445 3782103 18715x (万元)月销售额的众数是 4 万
7、元;中间的月销售额是 5 万元;平均月销售额是 7 万元(3)月销售额定为 7 万元合适 五、解答题(三):本大题共 2 小题,每小题 12 分,共 24 分 22如题 22 图,四边形ABCD内接于O,AC为O的直径,ADB=CDB(1)试判断ABC的形状,并给出证明;(2)若2AB,AD=1,求CD的长度 参考答案:(1)ABC是等腰直角三角形,理由如下:ADB=CDB ABBC ABBC AC 是直径 ABC 是 90 ABC是等腰直角三角形(2)在 RtABC 中 222ACABBC 可得:2AC AC 是直径 ADC 是 90 在 RtADC 中 222ACADDC 可得:3DC C
8、D 的长度是3 23如题 23 图,抛物线2yxbxc(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ/BC交AC于点Q(1)求该抛物线的解析式;(2)求CPQ面积的最大值,并求此时P点坐标 参考答案:(1)A(1,0),AB=4 结合图象点B坐标是(3,0)将(1,0),(3,0)代入2yxbxc得 01093bcbc 解得:23bc 该抛物线的解析式:223yxx(2)设点 P 为(,0)m 点 C 是顶点坐标 将1x 代入223yxx得4y 点 C 的坐标是(1,4)将点(1,4),(1,0)代入ykxb得 04kbkb 解得:22kb AC 解析式:22yx 将点(1,4),(3,0)代入ykxb得 034kbkb 解得:26kb BC 解析式:26yx PQ/BC PQ 解析式:22yxm 2222yxmyx 解得:121mxym 点 Q 坐标:1(,1)2mm(注意:点 Q 纵坐标是负的)CPQABCAPQCPBSSSS 11144(3)4(1)(1)222CPQSmmm 21322CPQSmm 21(1)22CPQSm 当1m 时,CPQS取得最大值 2,此时点 P 坐标是(1,0)CPQ面积最大值 2,此时点 P 坐标是(1,0)