《2021-2022学年江苏省扬州市仪征市、高邮市市级名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年江苏省扬州市仪征市、高邮市市级名校中考二模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC是等腰直角三角形,A=90,BC=4,点P是ABC边上一动点,沿BAC的路径移动,过点P作PDBC于点D,设BD=x,BDP的面积为y,则下列能
2、大致反映y与x函数关系的图象是()A B C D2已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且2x1时,y的最大值为9,则a的值为A1或2 B或C D13(2016四川省甘孜州)如图,在55的正方形网格中,每个小正方形的边长都为1,若将AOB绕点O顺时针旋转90得到AOB,则A点运动的路径的长为()AB2C4D84下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()ABCD5如图,AB是O的直径,弦CDAB于E,CDB=30,O的半径为,则弦CD的长为( )AB3cmCD9cm6计算的值( )A1BC3D7下列代数运算正确的是()
3、A(x+1)2=x2+1B(x3)2=x5C(2x)2=2x2Dx3x2=x58把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D249如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D910如图所示,点E在AC的延长线上,下列条件中能判断ABCD的是( )A3=ABD=DCEC1=2DD+ACD=180二、填空题(共7小题,每小题3分,满分21分)11如图,正方形ABCD边长为3,连接AC,A
4、E平分CAD,交BC的延长线于点E,FAAE,交CB延长线于点F,则EF的长为_12规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点13已知函数,当 时,函数值y随x的增大而增大14若关于x的分式方程的解为非负数,则a的取值范围是_15如图,在
5、ABC和EDB中,CEBD90,点E在AB上若ABCEDB,AC4,BC3,则AE_16在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,1)、B(1,1),将线段AB平移后得到线段AB,若点A的坐标为(2,2),则点B的坐标为_17函数y的自变量x的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图,在顶点为P的抛物线y=a(x-h)2+k(a0)的对称轴1的直线上取点A(h,k+),过A作BCl交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线ml又分别过点B,C作直线BEm和CDm,垂足为E,D在这里,我们把点A叫此抛物线的焦点,BC叫此抛物
6、线的直径,矩形BCDE叫此抛物线的焦点矩形(1)直接写出抛物线y=x2的焦点坐标以及直径的长(2)求抛物线y=x2-x+的焦点坐标以及直径的长(3)已知抛物线y=a(x-h)2+k(a0)的直径为,求a的值(4)已知抛物线y=a(x-h)2+k(a0)的焦点矩形的面积为2,求a的值直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值19(5分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34,45,其中点O,A,B在同一条直线上(1)求A,B两点间的距离(结果精确到0.1k
7、m)(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km)(参考数据:sin34=0.56,cos34=0.83,tan34=0.1)20(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至
8、少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21(10分)先化简,再求值:,其中a122(10分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?23(12分)如图,ABC中,AB=AC,以AB为直径的O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F(1)求证:EF是O的切线;(2)若F=30,BF=3,求弧AD的
9、长24(14分)解方程式:- 3 = 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:过A点作AHBC于H,ABC是等腰直角三角形,B=C=45,BH=CH=AH=BC=2,当0x2时,如图1,B=45,PD=BD=x,y=xx=;当2x4时,如图2,C=45,PD=CD=4x,y=(4x)x=,故选B2、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x
10、的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取
11、得最大值,即顶点是抛物线的最高点3、B【解析】试题分析:每个小正方形的边长都为1,OA=4,将AOB绕点O顺时针旋转90得到AOB,AOA=90,A点运动的路径的长为:=2故选B考点:弧长的计算;旋转的性质4、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可详解:A是轴对称图形,不是中心对称图形; B是轴对称图形,也是中心对称图形; C是轴对称图形,不是中心对称图形; D是轴对称图形,不是中心对称图形 故选B点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形
12、旋转180后与原图重合5、B【解析】解:CDB=30,COB=60,又OC=,CDAB于点E,解得CE=cm,CD=3cm故选B考点:1垂径定理;2圆周角定理;3特殊角的三角函数值6、A【解析】根据有理数的加法法则进行计算即可【详解】故选:A【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键7、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法
13、、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.8、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键9、A【解析】【分析】易得BC长为EF长的2倍
14、,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,BC=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.10、C【解析】由平行线的判定定理可证得,选项A,B,D能证得ACBD,只有选项C能证得ABCD注意掌握排除法在选择题中的应用【详解】A.3=A,本选项不能判断ABCD,故A错误;B.D=DCE,ACBD.本选项不能判断ABCD,故B错误;C.1=2,ABCD.本选项能判断ABCD,故C正确;D.D+ACD=180,ACBD.故本选项不能判断A
15、BCD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得CAE=E,易得CE=CA,由FAAE,可得FAC=F,易得CF=AC,可得EF的长【详解】解:四边形ABCD为正方形,且边长为3, AC=3, AE平分CAD, CAE=DAE,ADCE, DAE=E, CAE=E, CE=CA=3, FAAE,FAC+CAE=90,F+E=90, FAC=F, CF=AC=3,EF=CF+CE=3+3=612、【解析】试题解析:当x=1
16、.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x
17、=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组13、x1【解析】试题分析:=,a=10,抛物线开口向下,对称轴为直线x=1,当x1时,y随x的增大而增大,故答案为x1考点:二次函数的性质14、且【解析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,分式方程的解为非负数, 且 ,解得:a1 且a4 15、1【解析】试题分析:在RtACB中,C=90,AC=4,BC=3,由勾股定理得:AB=5,ABCEDB,BE=A
18、C=4,AE=54=1.考点:全等三角形的性质;勾股定理16、 (5,4)【解析】试题解析:由于图形平移过程中,对应点的平移规律相同,由点A到点A可知,点的横坐标减6,纵坐标加3,故点B的坐标为 即 故答案为: 17、x1【解析】根据分母不等于2列式计算即可得解【详解】解:根据题意得x+12,解得x1故答案为:x1【点睛】考查的知识点为:分式有意义,分母不为2三、解答题(共7小题,满分69分)18、(1)4(1)4(3)(4)a=;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,【解析】(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛
19、物线y=x1-x+的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a0)的直径为,可以求得a的值;(4)根据题意和抛物线y=ax1+bx+c(a0)的焦点矩形的面积为1,可以求得a的值;根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值【详解】(1)抛物线y=x1,此抛物线焦点的横坐标是0,纵坐标是:0+=1,抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,此抛物线的直径是:1-(-1)=4;(1)y=x1-x+=(x-3)1+1,此抛物线的焦点的横坐标是:3,
20、纵坐标是:1+=3,焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,此抛物线的直径时5-1=4;(3)焦点A(h,k+),k+=a(x-h)1+k,解得,x1=h+,x1=h-,直径为:h+-(h-)=,解得,a=,即a的值是;(4)由(3)得,BC=,又CD=AA=所以,S=BCCD=1解得,a=;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过
21、B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点由图可知,公共点个数随m的变化关系为当m1-时,无公共点;当m=1-时,1个公共点;当1-m1时,1个公共点;当1m5时,3个公共点;当5m5+时,1个公共点;当m=5+时,1个公共点;当m5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的
22、性质、矩形的性质解答19、(1)1.7km;(2)8.9km;【解析】(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离【详解】解:(1)由题意可得,BOC=AOC=90,ACO=34,BCO=45,OC=5km,AO=OCtan34,BO=OCtan45,AB=OBOA=OCtan45OCtan34=OC(tan45tan34)=5(10.1)1.7km,即A,B两点间的距离是1.7km;(2)由已知可得,DOC=90,OC=5km,DCO=56,cosDCO= 即 sin34=cos5
23、6, 解得,CD8.9答:此时雷达站C和运载火箭D两点间的距离是8.9km【点睛】本题考查解直角三角形的应用仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答20、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:3645%=80人;开私家车的人数m=8025%=20;扇形统计图中“骑自行车”的圆
24、心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可试题解析:解:(1)80,20,72.(2)骑自行车的人数为:8020%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,解得x50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用21、-1【解析】原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,
25、约分得到最简结果,把a的值代入计算即可求出值【详解】解:原式2(a3),当a1时,原式1【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键22、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个, 40x +60(100-x)=5200 ,解得:x=
26、40 , 100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个(2)设A型足球x个,则B型足球(100-x)个,100-x ,解得:x60 ,设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,k=-20,y随x的增大而减小,当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.23、(1)见解析;(2)2.【解析】证明:(1)连接OD,AB是直径,ADB=90,即ADBC,AB=AC,AD平分BAC,OAD=CAD,OA=OD,OAD=ODA,ODA=CAD,O
27、DAC,DEAC,ODEF,OD过O,EF是O的切线(2)ODDF,ODF=90,F=30,OF=2OD,即OB+3=2OD,而OB=OD,OD=3,AOD=90+F=90+30=120,的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了弧长公式24、x=3【解析】先去分母,再解方程,然后验根.【详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【点睛】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.