《虚功原理微分形式的变分原理精.ppt》由会员分享,可在线阅读,更多相关《虚功原理微分形式的变分原理精.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、虚功原理微分形式的变分原理第1页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)当力学系统相对惯性系处于当力学系统相对惯性系处于 静静 平衡时平衡时,必要条件的证明:必要条件的证明:对理想约束对理想约束第2页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)若系统的主动力虚功之和为零若系统的主动力虚功之和为零,充分条件的证明:充分条件的证明:对于受有理想约束的系统对于受有理想约束的系统 力学系统的约束是定常的力学系统的约束是定常的,各质点的无限小实位移必各质点的无限小实位移必与其中一组虚位移重合与其中一组虚位
2、移重合,故系统的主动力和约束力的故系统的主动力和约束力的实功之和也满足上式实功之和也满足上式 根据质点系的动能定理根据质点系的动能定理 说明系统开始时静止说明系统开始时静止,以后以后就会始终保持静止就会始终保持静止 第3页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)几点说明:几点说明:(1)普适性普适性.(2)在变动中寻找平衡的条件在变动中寻找平衡的条件.例如单摆例如单摆(3)与牛顿力学不同与牛顿力学不同,分析力学的方法不是将注意力放在分析力学的方法不是将注意力放在区分内力和外力上区分内力和外力上,而是放在区分而是放在区分主动力主动力和和约束力约
3、束力上上.第4页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)如图所示提升重物的装置如图所示提升重物的装置,以把手端点的弧坐标以把手端点的弧坐标s为广义坐标为广义坐标,设重物距地面高度为设重物距地面高度为h,根据虚功原理根据虚功原理 如果知道如果知道h和和s的函数关系的函数关系,通过上式通过上式,就可求出就可求出(4)虚功原理中所说的主动力所做虚功之和为零虚功原理中所说的主动力所做虚功之和为零,是是对对任意的任意的虚位移而言的虚位移而言的,而不是针对特殊的虚位移而不是针对特殊的虚位移.由于虚功原理的方程中不出现约束力由于虚功原理的方程中不出现约束力
4、,因此不能由虚功因此不能由虚功原理求出约束力原理求出约束力,但是但是,通过通过释放约束释放约束或用或用不定乘子法不定乘子法,可以求出约束力可以求出约束力 第5页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)二、广义平衡方程二、广义平衡方程 据虚功原理据虚功原理,有有为了得到广义平衡方程为了得到广义平衡方程,需要将虚功原理化为以需要将虚功原理化为以广义坐标表述的形式广义坐标表述的形式.展开后写成展开后写成 在在完整系完整系中中,第6页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)推出推出,广义平衡方程广义
5、平衡方程 虚功原理又可叙述为虚功原理又可叙述为:对于受对于受完整的完整的、定常的定常的、理想约理想约束的束的力学系统力学系统,保持保持静平衡静平衡的必要充分条件是的必要充分条件是所有的所有的广义力都为零广义力都为零.对于主动力均为有势力的有势系对于主动力均为有势力的有势系,有有所以所以,广义平衡方程成为广义平衡方程成为 代入虚功原理中代入虚功原理中,有有第7页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)三、虚功原理的应用三、虚功原理的应用 例题例题3 如图所示如图所示,匀质杆匀质杆OA,质量为质量为m1,长为长为l1,能能在竖直平面内绕固定的光滑
6、铰链在竖直平面内绕固定的光滑铰链 O转动转动,此杆的此杆的 A端端用光滑铰链与另一根质量为用光滑铰链与另一根质量为m2,长为长为l2的匀质杆的匀质杆 AB相连相连.在在 B端有一水平作用力端有一水平作用力 .求处于静平衡时求处于静平衡时,两两杆与铅垂线的夹角杆与铅垂线的夹角1和和 2.Al1Bl2Oxy1、判断约束类型、判断约束类型是否完整约束是否完整约束?是否理想约束是否理想约束?2、判断自由度、判断自由度第8页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)质量为质量为m的小环的小环P被限制在一个半径被限制在一个半径为为R的光滑大圆环上的光滑大圆
7、环上,大圆环绕过大圆环绕过大环中心的铅垂轴以大环中心的铅垂轴以的角速度的角速度均匀转动均匀转动,以小环为系统以小环为系统,试确定其试确定其自由度自由度.质点在球坐标系中用质点在球坐标系中用r,描述描述非定常约束非定常约束3、分析受力、分析受力(主动力主动力)ABOxy第9页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)4、由虚功原理、由虚功原理5、建立坐标系、建立坐标系(必须是静止坐标系必须是静止坐标系)6、转化成广义坐标、转化成广义坐标第10页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)广义力广义力
8、广义力广义力广义平衡方程广义平衡方程 第11页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)可求出系统处于静平衡时可求出系统处于静平衡时1,2所满足的方程所满足的方程:所以所以 第12页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)法二法二 先求出广义力先求出广义力,再写出平衡方程再写出平衡方程s=2,所以有所以有2个广义力个广义力 第13页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)虚功原理主要用于求解:虚功原理主要用于求解:(1)(1)系统的静平衡位置
9、;系统的静平衡位置;(2)(2)维持系统平衡时作用于系统上的主动力之间的关维持系统平衡时作用于系统上的主动力之间的关系系.第14页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)应用虚功原理解题的主要步骤是:应用虚功原理解题的主要步骤是:(1)明确系统的约束类型明确系统的约束类型,看是否满足虚功原理所要求的条件;看是否满足虚功原理所要求的条件;(2)正确判断系统的自由度正确判断系统的自由度,选择合适的广义坐标;选择合适的广义坐标;(3)分析并图示系统受到的主动力;分析并图示系统受到的主动力;(4)通过坐标变换方程通过坐标变换方程,将虚功原理化成将虚功
10、原理化成 的形式的形式,进而得出广义平衡方程进而得出广义平衡方程 对有势系对有势系,求出系统的势能求出系统的势能V 后,后,可通过可通过 得广义平衡方程得广义平衡方程;(5)求解广义平衡方程求解广义平衡方程.第15页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)四、利用虚功原理求约束力四、利用虚功原理求约束力 1 1、利用释放约束的方法求约束力、利用释放约束的方法求约束力 例题例题4 试求例题试求例题3中中O处的约束力处的约束力.代入虚功原理代入虚功原理,得得可解出约束力可解出约束力:第16页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分
11、原理)虚功原理(微分形式的变分原理)2、不定乘子法、不定乘子法.(拉格朗日乘数法拉格朗日乘数法)先设先设系统由系统由1个质点组成个质点组成,受受1个完整约束个完整约束 用用3个直角坐标作为描述系统位置的变量个直角坐标作为描述系统位置的变量.于是当系统平衡于是当系统平衡时时,应满足虚功原理应满足虚功原理 乘待定常数乘待定常数(不定乘子不定乘子),与前式相加与前式相加,得得 第17页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)称为称为不定乘子不定乘子,又称又称拉格朗拉格朗日乘子日乘子.这种方法称为这种方法称为不定乘子法不定乘子法.不定乘子不定乘子是一
12、个与约束力有关的量是一个与约束力有关的量.第18页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)将约束都释放将约束都释放,并将约束力视为主动力并将约束力视为主动力,虚功原理成为虚功原理成为即即 可知可知设想质点被约束在一个光滑曲面上设想质点被约束在一个光滑曲面上,其约束力为其约束力为 即即 说明约束力沿曲面的法线方向,说明约束力沿曲面的法线方向,第19页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)一般性讨论一般性讨论设一力学系统由设一力学系统由n个质点组成个质点组成,受到受到 k个完整约束的限制个完整
13、约束的限制 则则3n个坐标中有个坐标中有 k个是不独立的个是不独立的.系统平衡时系统平衡时,应满足虚功原应满足虚功原理理 它们满足它们满足k个由完整约束给出的方程个由完整约束给出的方程:第20页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)与与k个约束方程联立求解个约束方程联立求解,k个个与平衡位置坐标便可同时与平衡位置坐标便可同时求出求出.称为称为不定乘子不定乘子,又称又称拉格朗日乘子拉格朗日乘子.这种方法称为这种方法称为不定乘子法不定乘子法.将将k个完整约束都释放个完整约束都释放,并将约束力都视为主动力并将约束力都视为主动力,虚功虚功原理成为原
14、理成为 第21页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)3n个坐标变分变成完全独立的了个坐标变分变成完全独立的了,所以所以 与与比较比较不定乘子不定乘子与约束力有密切关系与约束力有密切关系.第22页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)例题例题 5 一质量为一质量为m的质点的质点P被限制在光滑球面上运动被限制在光滑球面上运动.已已知球面的半径为知球面的半径为a,求质点的平衡位置和约束力求质点的平衡位置和约束力.解解 系统系统:质点质点建立原点在球心上的直建立原点在球心上的直角坐标系角坐标系 Oxyz,质点的约质点的约束方程为束方程为s=2,但解题时仍以质点的但解题时仍以质点的3个坐标个坐标x,y,z作为确定质点位置作为确定质点位置的变量的变量.它们的变分不独立它们的变分不独立,满足以下关系满足以下关系:质点所受的主动力是重力质点所受的主动力是重力 根据虚功原理根据虚功原理,即即 第23页,本讲稿共24页7-3 7-3 虚功原理(微分形式的变分原理)虚功原理(微分形式的变分原理)不定乘子的待定性可使不定乘子的待定性可使x,y,z相互独立相互独立(系数均为系数均为0),于是于是,可得到质点平衡位置的两组坐标可得到质点平衡位置的两组坐标:第24页,本讲稿共24页