研究生结构工程弹塑性力学课件CH.ppt

上传人:wuy****n92 文档编号:73601241 上传时间:2023-02-20 格式:PPT 页数:29 大小:2.55MB
返回 下载 相关 举报
研究生结构工程弹塑性力学课件CH.ppt_第1页
第1页 / 共29页
研究生结构工程弹塑性力学课件CH.ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《研究生结构工程弹塑性力学课件CH.ppt》由会员分享,可在线阅读,更多相关《研究生结构工程弹塑性力学课件CH.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章第四章 弹性力学空间问题弹性力学空间问题4-l 空间轴对称问题的基本方程 4-2 按位移求解空间轴对称问题4-3 基于乐甫(Love)位移函数求解空间轴对称问题4-4 按应力求解扭转问题4-5 椭圆截面杆的扭转4-6 弹性扭转的薄膜比拟4-7 矩形截面杆的扭转*4-8 薄壁杆的扭转 4-l 空间轴对称问题的基本方程空间轴对称问题空间轴对称问题 在空间问题中,如果弹性体的几何形状、约束情况以及所受的外来作用都对称于某一轴,通过此轴的任一平面都是对称面,则所有的应力、应变和位移也都对称于此轴。柱坐标(柱坐标(r,,z)x=rcosy=rsinz=z 轴对称柱坐标问题的基本方程1平衡微分方程

2、2几何方程 3物理方程1平衡微分方程在轴对称情况下,切应力z=z=0,r=r=0,而剩下的应力分量r,z,zr均为r与z的函数,体力分量只有沿r与z方向的Fr与Fz。2几何方程 轴对称情况下,只剩下位移分量ur,w,应变分量剩下r,z,zr,且都与无关,3物理方程 4-2 按位移求解空间轴对称问题空间轴对称柱坐标形式的拉梅方程空间轴对称柱坐标形式的拉梅方程4-3 借助于乐甫(借助于乐甫(Love)位移函)位移函数求解空间轴对称问题数求解空间轴对称问题 一、乐甫位移函数(r,z)代入无体力时拉梅方程,第一式自动满足,第二式变成空间轴对称位移解法归结为在给定的边界条件下求解双调和方程(4-6)。(

3、4-6)(4-5)能够满足式(4-6)的双调和函数(一)无限体内受集中力(不计体力)的问题设无限体内一点受集中力P的作用,如图所示,求不计自重时的位移及相应的应力分布,这是一个轴对称的问题,又称开尔文(Kelvin)问题。可采用乐甫位移函数求解。(二)半无限体表面受法向集中力(不计体力)的问题这是著名的布希涅斯克(Boussinesq,T.V.)问题(图4-5)。也是轴对称的问题,为了求得乐甫位移函数,经过类似的量纲分析,可以设定为长度的一次幂函数。=B1R+B2R-zln(R+Z)44 按应力求解扭转问题按应力求解扭转问题 扭转问题的应力解法化问题为泊松方程的边值问题 可以证明:C=2 半逆

4、解法假设:不计体力。作为应力解法要求,应力分量必须满足平衡微分方程和应力相容方程。由式(b)的第一、第二式可知与坐标z无关(b)再从式(b)的第三式得到 引入一个扭转应力函数(x,y),并假设 则可以满足平衡微分方程。(4-17)不计体力,空间问题的应力相容方程为=0,则上列方程中只剩下第四、第五式(4-17)边界条件侧面边界上 =K (在横截面周界c上)其中,K为常数。对单连通区域(实心杆),可以取K=0,即(x,y)=0 (在横截面周界c上)(4-18)这是因为,由式(4-17)可知,当扭转应力函数相差一个常数K时,对求应力分量无影响。端面边界条件(以上端面为例)GD称为抗扭刚度 将式(4

5、-23)代入式(g)的第四、第五式,可以得到(4-23)由式(h)通过积分求出位移分量w。现在如果将式(h)的第一式两边对y求一阶编导数而第二式对x求一阶偏导数,然后相减,可以得到(h)柱形杆的扭转问题的应力解法小结对于柱形杆的扭转问题的应力解法,归结为在边界条件式(4-18)下求解泊松方程(4-24),求得了应力函数(x,y)后,由式(4-17)求得应力分量,再由式(4-20)(单连通)求得D。可以证明,这里出现的为沿z方向的单位长度的扭转角,它可以由D代入式(4-19)求出。(4-24)(4-17)(x,y)=0 (4-18)(在横截面周界c上)(4-20)(4-19)4-5椭圆截面杆的扭

6、转椭圆截面杆的扭转 4-6 弹性扭转的薄膜比拟法弹性扭转的薄膜比拟法 Z=0(在薄膜的边界上)则薄膜垂度Z除以G(即Z/G)就相当于扭转应力函数而薄膜和底面所包围的体积的两倍就相当于扭矩M。2V=M Z=G 等高线切应力线 表示了薄膜曲面上的沿等高线法线方向斜率的大小,要知道最大的剪应力所在点只须看薄膜上哪一点的斜率最大。4-7 矩形截面杆的扭转矩形截面杆的扭转 一、横截面为狭长矩形截面杆的扭转由薄膜比拟知道,对于张在a/b的值很大的矩形周界上薄膜,几乎不受短边约束的影响,薄膜曲面接近一个柱面,由此可知应力函数在横截面的绝大部分上与x无关,可以设=(y)?一、横截面为狭长矩形截面杆的扭转得:B=-1 上述结果除在截面的短边附近外,对截面大部分区域是正确的。二、具有任意边长比的矩形截面杆的扭转 在狭长矩形截面杆的扭转问题的应力函数的基础上加上一个修正函数欢迎批评指正!欢迎批评指正!谢谢谢谢 !Stonehenge

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁