《研究生结构工程弹塑性力学课件-CH优秀PPT.ppt》由会员分享,可在线阅读,更多相关《研究生结构工程弹塑性力学课件-CH优秀PPT.ppt(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、塑性本构关系 在塑性变形中,应力不但与应变有关,还与变形历史过程以及物质微观结构的变形有关。因此,常将此时的应力应变关系称为本构关系,这样更能反映物质本性的变更。塑性力学与弹性力学求解方程的区分在于物理方程,所以本构关系是塑性力学的核心问题。塑性本构关系就其表达形式而言,分为两个类型:全量理论或形变理论;增量理论或流淌理论.增量理论主要有:莱维米泽斯(Lvy-Mises)理论和普朗特罗依斯(Prandtl-Reuss)理论。接受塑性势的概念,将以更一般的方法探讨塑性本构关系。9-1 建立塑性本构关系的基本要素建立塑性本构关系的基本要素 建立塑性本构关系,须要考虑三个要素:(1)初始屈服条件,依
2、据这个条件可以推断塑性变形是从何时起先的,以及划分塑性区和弹性区的范围,以便分别接受不同的本构关系来分析。(2)与初始及后继加载面相关连的某一流淌法则。也就是说要有一个应力和应变(或它们的增量)间的定性关系。这个关系包括方向关系(即两者主轴之间的关系)和安排关系(即两者的比例关系)。事实上是探讨它们的偏量之间的关系。(3)确定一种描述材料硬化特性的硬化条件,亦即加载函数。有了这个条件才能确定应力、应变或它们的增量间的定量关系。上述的(1)、(3)两点已经在第八章中作了具体的介绍。本章就在探讨第(2)点即流淌法则的基础上来建立塑性的本构关系。9-2 弹性本构关弹性本构关系系 1.1.直角坐标形式
3、直角坐标形式2.2.应力强度应变强度形式应力强度应变强度形式 3.3.应力应变偏张量形式应力应变偏张量形式 1.1.直角坐标形式直角坐标形式(9-1)(9-1)2.2.应力强度应变强度形式应力强度应变强度形式(9-1)(9-2)(9-3)(8-12)由式(9-1)可以得出 代入应力强度表达式3.3.应力应变偏张量形式应力应变偏张量形式(9-4)(9-4)(9-5)(9-5)(9-6)(9-5)式中只有五个方程是独立的,须要补充(9-4)式,才与(9-1)式等价。增量形式为了与塑性本构关系中增量理论的公式相对比和运用,将(9-5)和(9-4)式写为增量形式:(9-7)(9-8)9-3 全量理论全
4、量理论 全量理论认为应力和应变之间存在着一一对应的关系,因而用应力和应变的终值(全量)、建立其塑性本构方程。假如我们在简洁加载的状况下考察材料的应力应变关系,则塑性变形与非线性弹性变形没有什么区分。所以,全量理论在本质上与非线性弹性理论相像,都是Hooke定律的一个自然推广。历史上,全量理论以伊柳辛(AA)的小弹塑性理论应用最为广泛。“小弹塑性”系为离弹性状态不远,进入塑性状态后,其变形也是小的。9-3 全量理论全量理论 1.伊柳辛理论 2.全量理论的基本方程及边值问题 3.简洁加载定理 4.卸载定律 1伊柳辛理论伊柳辛理论 1943年,伊柳辛提出了一个硬化材料在弹塑性小变形态况下的塑性本构关
5、系,这个理论以下列基本假设为基础:(1)体积变更是弹性的,且与平均应力m成正比。(2)应变偏量与应力偏量成正比(3)应力强度是应变强度的确定函数 (1)体)体积变积变更是更是弹弹性的性的(1)体积变更是弹性的,且与平均应力m成正比。总应变为弹性应变与塑性应变之和,即因体积变更始终是弹性的,塑性变形部分的体积变更恒为零,即 (2)应变偏量与应力偏量成正比即 这里只是在形式上和广义Hooke定律相像,和广义Hooke定律表达式(9-5)不同,这里的比例系数不是一个常数,它和点的位置以及荷载水平有关,即对物体的不同的点,不同的荷载水平,都不相同,但对同一点,同一荷载水平,是常数。所以这是一个非线性关
6、系。(3)应力强度是应变强度的确定函数即 (e)依据有关试验证明,在简洁加载或偏离简洁加载不大时,尽管在主应力空间中射线方向不同,可近似地用单向拉伸曲线来表示。这就是单一曲线假设。因此,(e)式的函数关系与应力状态无关,只和材料特性有关,可依据该种材料的单向拉伸试验来确定。(9-9)(9-10)(9-11)小弹塑性全量理论本构方程小弹塑性全量理论本构方程(9-12)全量理论与加载历史的关系对于强化材料,全量理论的应力应变之间存在一一对应关系,最终的应变确定于最终的应力,与加载的历史无关。实际状况一般并非如此,达到最终的应力可以通过不同的加载路径(中间可有强化后的卸载),而最终的应变由于不同加载
7、历史的影响,一般并不相同。若为简洁加载,应力重量按同一比例增加,则应变状态与加载历史无关,仅由最终应力状态所确定。所以,简洁加载状况下,应用全量理论是正确的。全量理论的适用范围全量理论的适用范围对于强化材料,全量理论的应力应变之间存在一一对应关系,最终的应变确定于最终的应力,与加载的历史无关。实际状况一般并非如此,达到最终的应力可以通过不同的加载路径(中间可有强化后的卸载),而最终的应变由于不同加载历史的影响,一般并不相同。若为简洁加载,应力重量按同一比例增加,则应变状态与加载历史无关,仅由最终应力状态所确定。所以,简洁加载状况下,应用全量理论是正确的。2.全量理论的基本方程及边值问题全量理论
8、的基本方程及边值问题 平衡方程几何方程本构方程 以上基本方程共15个,求解时还要用到边界条件.(9-15)(9-13)(9-14)全量理论小结对塑性力学的全量理论而言,其边值问题归结为在上述边界条件下求解15个基本方程,以确定15个未知物理量。关于求解方法,和弹性力学相像,也可以接受两种基本解法,即按位移求解和按应力求解。明显,要比弹性力学求解困难得多,因为这里的方程(9-15)是非线性的,解题时会遇到数学上的困难。上述是针对塑性区而言的,对弹性区或卸载区应按弹性力学求解,且在弹、塑性区交界面上还应满足适当的连续条件。简洁加载定理简洁加载定理 在比例加载条件下,全量理论是正确的。现在提出了一个
9、问题,物体处在什么条件下,才能保证其内部的每个单元体处于简洁加载。伊柳辛于1946年提出了简洁加载定理,回答了这个问题.简洁加载定理假如满足下面一组充分条件,物体内部每个单元体都处于简洁加载之中。这组条件是(1)小变形;(2)材料不行压缩,即(3)载荷按比例单调增长,假如有位移边界条件,则只能是零位移边界条件;(4)材料的 曲线具有幂函数 的形式,其中A和n为材料常数。利用平衡方程,全量理论的本构关系及边界条件,可以证明定理的正确性。探讨 尽管全量理论有其局限性,但应用比较便利,很多人在非简洁加载时也用了全量理论。由于缺乏理论依据,在应用时还必需用试验加以验证,而大部分的试验验证尚能符合,值得
10、令人深思。看来在实际应用中,全量理论的适用范围不限于简洁加载。这个范围的确定,以及在这个范围内应用全量理论所引起的误差,都尚需作进一步的探讨。4.卸载定律卸载定律一、单向拉伸应力状态的卸载 二、困难应力状态的卸载 9-4 刚塑性材料的增量理论 在塑性变形阶段,由于塑性变形的不行逆性,使塑性区的变形不仅取决于其最终状态的应力,而且与加载路径(即变形路径)有关。为了对变形的发展过程作出分析,描述塑性变形规律的塑性本构关系,应当是它们增量之间的关系。所以,一般而言,对塑性力学问题,只有按增量形式建立起来的理论,才能追踪整个加载路径来求解。这就是增量理论的动身点。假如所探讨问题的塑性变形远大于其弹性变
11、形,可以略去弹性变形而将构件视为刚塑性材料。适用于刚塑性材料的增量理论,即是Levy-Mises增量理论。9-4 刚塑性材料的增量理论1Levy-Mises流淌法则流淌法则 2.Levy-Mises理论接受的假设理论接受的假设 3.Levy-Mises理论本构方程及其应用理论本构方程及其应用1Levy-Mises流淌法则流淌法则 历史上对塑性变形规律进行探讨是从1870年由Saint-Ven-ant对平面应变的处理起先的。他从对物理现象的深刻理解提出了应变增量(而不是应变全量)主轴和应力主轴重合的假设。接着1871年M.Levy引用了Saint-Venant的这个关于方向的假设,并进一步提出了
12、安排关系:应变增量各重量与相应的应力偏量各重量成比例,即 (9-20)式中的比例系数d确定于质点的位置和荷载水平。这一假设在塑性力学的发展过程中是具有很重要意义的,但在当时并没有引起人们的重视,他们的这一成果在他们本国以外很少为人们所知。直到40多年以后,于1913年Von Mises又独立地提出了相同的关系式以后,才广泛地作为塑性力学的基本关系式。后来试验表明,这个关系式并不包括弹性变形部分。所以,现在认为这个关系式是适用于刚塑性体的,就把这个关系式称为Lvy-Mises流淌法则。2.Levy-Mises理论接受的假设(1)在塑性区总应变等于塑性应变(2)塑性变形中无体积变更(3)塑性应变增
13、量的偏量与应力偏量成正比(4)接受Mises屈服条件(1)在塑性区总应变等于塑性应变略去弹性应变(2)塑性变形中无体积变更体积变更基本是弹性的,塑性变形引起的体积变更可以略去不计(3)塑性应变增量的偏量与应力偏量成正比由于 不计弹性应变不计弹性应变 式中式中dd也是非负的比例因子,随载荷及点的位置而变更。在同一也是非负的比例因子,随载荷及点的位置而变更。在同一载荷同一点对各个方向而言是常数。载荷同一点对各个方向而言是常数。(9-28)d的确定 将以上两式的分子分母分别平方,并将其次式分子分母平方后各乘以3/2的系数,将其相加就有 称为“等效塑性应变增量”(4)接受Mises屈服条件 刚塑性材料
14、屈服后3.Levy-Mises理论本构方程及其应用理论本构方程及其应用由于在此不计弹性变形,塑性应变即为总应变。将(9-25)式写成一般形式:(9-29)探讨 在已知应变增量时,由式(9-29)可以确定应力偏量。但由于体积的不行压缩性,不能确定应力球张量,所以就不能确定应力张量。反之,假如已知应力重量,就可以知道应力偏量,但由(9-29)式只能求得应变增量各重量的比值,不能确定应变增量各重量的实际大小。这是因为对于进入塑性状态的刚塑性体,在确定应力下应变可取多数个值。9-5 弹塑性材料的增量理论1.普朗特罗依斯(Prandtl-Reuss)理论 2.志向弹塑性材料的增量型本构方程3.弹塑性强化
15、材料的增量型本构方程 4.增量理论假设的试验验证 5.增量理论的基本方程及边值问题1.1.普朗特普朗特罗依斯(罗依斯(Prandtl-ReussPrandtl-Reuss)理论)理论下面将针对不同材料不同材料来确定比例系数d2.志向弹塑性材料的增量型本构方程(9-34)接受Mises屈服条件,为了便于确定d,将其写为以Sx、Sy、Sz分别乘方程(9-34)的左三式,以xy、yz、xz分别乘(9-34)的右三式并相加,再利用(a)、(b)式,即可得出(a)(b)如令 在此dWd为形态变更比能增量,在塑性变形中dWd恒大于零,从而由式(c)有(d)志向弹塑性材料的增量型本构方程(9-35)(9-3
16、5)分析志向弹塑性材料的初始屈服面与加载曲面相重合。加载时,应力点位于屈服面上,有新的塑性变形产生 卸载时,应力点由屈服面上退回到屈服面内当应力点位于屈服面内,即处于弹性状态应用假如应力和应变增量已知,从式(d)算出dWd,代入(9-35)后即可求出应力增量的偏张量各个重量和平均应力增量dm,最终求得各个应力增量,将它们叠加到原有应力上去,即得到新的应力水平,它们就是产生新的塑性应变以后的各个应力重量。但另一方面,在已知应力及应力增量时,不能由式(9-35)确定应变增量,而只能确定其各个重量间的比值。只有当变形受到适当的制约的状况下,才有可能确定其应变的大小。这是因为对志向弹塑性材料,在确定应
17、力下应变可以取多数个值。9-6 塑性势理论塑性势理论 1.稳定材料和不稳定材料稳定材料和不稳定材料 2.德鲁克(德鲁克(Drucker)公设及其推论)公设及其推论 3.塑性塑性势理论势理论 图9-3 稳定材料和不稳定材料1.1.稳定材料和不稳定材料稳定材料和不稳定材料 稳定材料稳定材料 对图9-3(a)所示材料,随着加载,应力有增量时,产生相应的应变增量,材料是强化的。在这一变形过程中表明附加应力在应变增量上作正功,具有这种特性的材料称为稳定材料或强化材料。图9-3 稳定材料和不稳定材料请大家指责指正!请大家指责指正!感谢感谢 !9-5 弹塑性材料的增量理论弹塑性材料的增量理论 1.Prand
18、tl-Reuss流淌法流淌法则则1924年年L.Prandtl将将Lvy-Mises关系式推广关系式推广应应用于塑用于塑性平面性平面应变问题应变问题。他考。他考虑虑了塑性状了塑性状态态的的变变形之中的形之中的弹弹性性变变形部分,并形部分,并认为弹认为弹性性变变形听从广形听从广义义Hooke定定律。而塑性律。而塑性变变形部分,假定塑性形部分,假定塑性应变应变增量增量张张量和量和应应力偏力偏张张量相像且同量相像且同轴线轴线。1930年年A.Reuss又把又把L.Prandtl应应用在平面用在平面应变应变上的上的这这个假个假设设推广到一般推广到一般三三维问题维问题。依据。依据这这个假个假设设建立起来的关系称建立起来的关系称为为Prandtl-Reuss流淌法流淌法则则。这这个关系式可表示个关系式可表示为为 (9-30)精品课件精品课件!精品课件精品课件!比例系数也是和质点位置和荷载水平有关,所以是一个非线性的关系式。