《霍尔效应的应用实验报告.pdf》由会员分享,可在线阅读,更多相关《霍尔效应的应用实验报告.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、霍尔效应法测量空间的磁场霍尔效应法测量空间的磁场实验者:沐俊峰同组实验者:周俊汀指导教师:会听(班级:A12 储运 1 学号:120701113 联系号:)【摘要】通过对利用霍尔效应测磁场实验的原理、过程、及实验数据的处理进行分析,得出本实验误差的主要来源,并对减小误差提出切实可行的方法及注意事项,其中重点介绍利用对称测量法处理数据以减小误差的方法。【关键词】霍尔效应 误差分析 对称测量法一、引言一、引言自 1879 年霍尔效应被发现以来,它在测量方向得到了广泛的应用,其中测螺线管轴线上的磁场是十分重要的一个方面。但是在测量中,总会产生各种各样的副效应,这些副效应带来了一定的测量误差,有些副效
2、应的影响可与实测值在同一数量级,甚至更大。因此在实验中如何消除这些副效应成为很重要的问题。本文分析了霍尔效应测磁场的误差来源,并提出了减小误差应采取的措施及一些注意事项。二、设计原理二、设计原理、实验目的、实验目的1了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。2学习用“对称测量法”消除副效应的影响,测量并绘制试样的VHIS和 VHIM曲线。3确定试样的导电类型、载流子浓度以及迁移率。、实验仪器、实验仪器1THH 型霍尔效应实验仪,主要由规格为3.00kGS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、IS和 IM换向开关、VH和 V(即 VAC)测量选择开关组成。2THH 型霍
3、尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。、实验原理、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a)所示的N 型半导体试样,若在 X 方向的电极 D、E 上通以电流 Is,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力:(1)Fge v B(a)(b)图(1)霍尔效应示意图.-则在 Y 方向即试样 A、A电极两侧就开始聚积异号电荷而产生相应的附加电场-霍尔电场。电场的指向取
4、决于试样的导电类型。对 N 型试样,霍尔电场逆 Y 方向,P 型试样则沿 Y 方向,其一般关系可表示为显然,该霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH与洛伦兹力FE相等时,样品两侧电荷的积累就达到平衡,此时有FE=eEH(2)其中 EH为霍尔电场强度,是载流子在电流方向上的平均漂移速率。设试样的宽度为 b,厚度为 d,载流子浓度为 n,则Is nevbd由(2)、(3)两式可得(3)VH EHb I B1ISB RHSneddd(4)在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的 A、A两电极之间的电压并不等于真实的 VH值,而是包含着各种副效应引起的附加电
5、压,因此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是 Is 和 B 的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和 B 组合的两点之间的电压V1、V2、V3、和V4,即+Is,+B,V1+Is,-B,V2-Is,-B,V3-Is,+B,V4然后求上述四组数据 V1、V2、V3和 V4的代数平均值,可得:(mV)(5)VH4通过对称测量法求得的 VH,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。V1 V2 V3 V4由式(4)可知霍尔电压VH(A、A电极之
6、间的电压)与IsB 乘积成正比,与试样厚度d成反比。比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。只要测出 VH(V)1以及知道 Is(A)、B(T)和 d(m)可按下式计算 RH霍尔系数R n eHRHVHd(6)ISB根据 RH可进一步确定以下参数:(1)由 RH的符号(或霍尔电压的正、负)判断试样的导电类型。判断的方法是按图(1)所示的 Is 和 B 的方向,若测得的 VHVAA0,(即点 A 的电位低于点 A的电位)则 RH为负,样品属 N 型,反之则为 P 型。.可修编-.-(2)求载流子浓度。由n1RHe可求出载流子浓度。应该指出,这个关系式是假定所有的载流子都具有相同
7、的漂移速率得到的,如果考虑载流子的漂移速率服从统计分布规律,需引入修正因子 3/8。(3)结合电导率的测量,求载流子的迁移率。电导率可以通过图(a)所示的 A、C 电极进行测量。设 A、C 间的距离 L=3.00mm,样品的横截面积为S=bd,流经样品的电流为 Is,在零磁场下,若测得 A、C 间的电位差为 V,可由下式求得,IsL(7)VS电导率与载流子浓度 n 以及迁移率之间有如下关系:n e(8)即|RH|,通过实验测出值即可求出。根据上述可知,要得到大的霍尔电压,关键是要选择霍尔系数大(即迁移率高、电阻率亦较高)的材料。因|RH|,就金属导体而言,和均很低,而不良导体虽高,但极小,因而
8、上述两种材料的霍尔系数都很小,不能用来制造霍尔器件。半导体高,适中,是制造霍尔器件较理想的材料,由于电子的迁移率比空穴的迁移率大,所以霍尔器件都采用 N 型材料,又由于霍尔电压的大小与材料的厚度成反比,因此,薄膜型的霍尔器件的输出电压较片状要高得多。就霍尔元件而言,其厚度是一定的,所以实用上采用1KH(9)n e d来表示霍尔元件的灵敏度,KH称为霍尔元件灵敏度。三、实验方案三、实验方案(1)按图(2)连接测试仪和实验仪之间相应的Is、VH和 IM各组连线,Is 及 IM换向开关投向上方,表明 Is 及 IM均为正值(即 Is 沿 X 方向,B 沿 Z 方向),反之为负值。VH、V切换开关投向
9、上方测 VH,投向下方测 V(样品各电极及线包引线与对应的双刀开关之间连线已由制造厂家连接好)。图(2)霍尔效应实验仪示意图接线时严禁将测试仪的励磁电源“IM输出”误接到实验仪的“Is 输入”或“VH、V输出”处,否则一旦通电,霍尔元件即遭损坏!.可修编-.-(2)对测试仪进行调零。将测试仪的“Is 调节”和“IM调节”旋钮均置零位,待开机数分钟后若 VH显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。(3)测绘VHIs 曲线。将实验仪的“VH、V”切换开关投向VH侧,测试仪的“功能切换”置 VH。保持 IM值不变(取 IM0.4A),测绘 VHIs 曲线。(4)测绘
10、 VHIm 曲线。实验仪及测试仪各开关位置同上。保持 Is 值不变,(取 Is2.00mA),测绘 VHIs 曲线。(5)测量 V值。将“VH、V”切换开关投向 V侧,测试仪的“功能切换”置在零磁场下,取 Is2.00mA,测量 V。注意:Is 取值不要过大,以免V太大,毫伏表超量程(此时首位数码显示为 1,后三位数码熄灭)。(6)确定样品的导电类型。将实验仪三组双刀开关均投向上方,即Is 沿 X 方向,B 沿Z 方向,毫伏表测量电压为VAA。取Is2mA,IM0.6A,测量VH大小及极性,判断样品导电类型。四、数据记录与处理四、数据记录与处理1.实验条件室温=15N 型霍尔片的厚度 d=0.
11、10mm;线径=0.67mm线圈匝数 N=1500T;UO=-0.2mVSH=12mV/mA*KG;Rin=148Rout=154;2.实验数据参考表(1)测绘 VHIS曲线,数据记录如下Is(mA)0.000.501.001.502.00V1(mV)V2(mV)+Is+B+Is-B0.030.831.652.473.29-0.02-0.87-1.75-2.62-3.50V3(mV)-Is-B0.040.891.762.633.50V4(mV)-Is、+B-0.01-0.81-1.63-2.49-3.26VHV1 V2 V3 V44(mV)0.250.851.702.553.39其中电流围:I
12、M0.4A图形如下(横坐标为 IS/mA,纵坐标为 VH/mV).可修编-.-(2)绘测 VHIM曲线,数据记录如下IM(A)0.0000.2000.4000.6000.8001.0000.8000.6000.4000.2000.000V1(mV)+Is+B0.11.63.35.06.78.36.75.03.31.60.1V2(mV)V3(mV)V4(mV)V1 V2 V3 V4VH(mV)4+Is-B-Is-B-Is、+B-0.2-1.9-3.6-5.3-7.0-8.6-7.0-5.3-3.6-1.9-0.20.11.83.55.26.98.66.95.23.51.80.10.0-1.6-3
13、.3-5.0-6.7-8.4-6.7-5.0-3.3-1.60.00.11.73.45.16.88.56.85.13.41.70.1其中电流围:Is2.00mA图形如下(横坐标为 IM/mA,纵坐标为 VH/mV)五、思考分析五、思考分析.可修编-.-1、如何精确测量霍尔电压?本实验采用什么办法消除各种附加电压?答:多次测量取平均值。本实验通过对称测量法求的霍尔电压。霍尔片的法线一致,对测量效果有什么影响?答:磁场与霍尔片的法线不一致,会造成有效磁场变小,则对应测得霍尔系数变大。3、能否用霍尔片元件测量交变磁场?若能,怎么测量?答:可以,因为霍尔效应建立的时间极短,使用交流磁场时,所得的霍尔电
14、压也是交变的,此时的 IM和 VH应理解为有效值,上下板交替累积载流子无稳定的电势差。4、本实验的主要误差有哪些,这些误差对实验有何影响?答:产生霍尔效应的同时,伴随着多种副效应,以导致实验测得的 A、A两级之间的电压并不等于真实的 VH值,而是包含了各种副效应引起的附加电压。本实验采取了对称测量法,基本上能够把副效应的影响从测量的结果中消除。虽然还存在个别无法消除的副效应,但其引入的误差甚小,可忽略不计。六、六、实验结论实验结论1.当励磁电流 MI=0 时,霍尔电压不为 0,且随着霍尔电流的增加而增加,通过作图发现二者满足线性关系。说明在霍尔元件存在一不等位电压,这是由于测量霍尔电压的两条接线没有在同一个等势面上造成的。2.当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。3.当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系参考文献参考文献1竺江峰,芦立娟,鲁晓东.大学物理实验M.中国科学技术.2005.9:2122192 钱锋,人培.大学物理实验(修订版)M.2005,高等教育,2006.191-2023大学物理实验编写组,大学物理实验,大学2000,223-2302、磁场不恰好与.可修编-