《交通运输自动控制原理课程设计报告.pdf》由会员分享,可在线阅读,更多相关《交通运输自动控制原理课程设计报告.pdf(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 交通运输自动控制原理课程设计报告 交通运输自动控制原理 课程设计报告 本 组 组 员 指 导 教 师 二一四年五月二十二日 交通运输自动控制原理课程设计报告 目 录 1 自动控制系统建模设计 1 1.1 系统建模题目 1.1 1.1.1 基本构成及机理分析 2 1.1.2 反馈控制结构模型及工作原理 2 2 自动控制系统仿真实验分析 7 2.1 系统仿真实验题目 1 7 2.1.1 实验步骤 7 2.1.2 实验分析计算依据 7 2.1.2 结论图表数据分析 7 2.2 系统仿真实验题目 2 8 2.3 系统仿真实验题目 3 8 附录 A 程序源代码 40 附录 B 42 参考文献 44 交
2、通运输自动控制原理课程设计报告 1+-1 自动控制系统建模设计 11 系统建模题目 1 查阅控制系统的相关专业资料,运用自动控制系统的基本构成及反馈控制原理对通控制系统进行机理分析,建立其反馈控制结构模型,阐明系统的工作原理。我们选择 ATO 系统进行研究。ATO 系统即列车自动驾驶子系统(ATO-Automatic TrainOperation)。是列车控制系统(automatic train control,ATC)重要的子系统。ATO系统能代替司机驾驶列车,使列车平稳地加速到运行速度,并根据接收到的 ATP 限制速度命令和 ATO 到站停车速度曲线自动调整列车速度,实现列车牵引加速、匀速
3、惰行、减速制动控制和精确停车等基本驾驶功能。ATO 系统的功能分为基本控制功能和服务功能。基本控制功能包括:自动驾驶、自动折返、自动控制车门、屏蔽门开闭。这三个基本控制功能相互之间独立地运行。服务及其他功能包括:故障自诊断、运行信息记录、列车位置、允许速度、巡航/惰行功能、PTI(列车识别系统)支持功能。在这里我们主要分析 ATO 中自动驾驶(即自动调整列车速度)的功能,研究其自动控制的结构模型。1.1.1 基本构成及机理分析 ATO 系统的速度调整系统构成:由运行等级模式曲线计算模块、PID 速度控制器和受控对象(列车运行模型)共同组成。运行等级模式曲线的计算模块根据当前区间情况离线计算运行
4、等级模式曲线,PID 速度控制器根据选定的运行等级,以该等级的运行等级模式的目标速度一距离曲线为目标曲线,输出速度信号施加给受控对象(列车运行模型),控制列车快速平稳的跟随给定的目标速度曲线。其速度控制系统的框图如图所示。V=f(s)运行等级PID 速度控制器 受控对象(列车运行模型)0 0 交通运输自动控制原理课程设计报告 2 PID 速度控制器(S)=+V+-1.1.2 反馈控制结构模型及工作原理 上图为 ATO 控制系统的反馈结构模型。PID速度控制器即 PID(比例(proportion)、积分(integration)、微分(differentiation)控制器,由比例单元(P)、
5、积分单元(I)和微分单元(D)组成,传递函数为:(S)=+Kp、Ki、Kd 三个参数常量通过系统整定得到。受控对象即为列车模型,这里我们取列车模型的传递函数为:()=10.42+所以整个闭环系统的传递函数为:()=(S)()1+(S)()=2+0.43+(1+)2+通过相关参数整定方法,我们可以得知:=0.764=0.35=0.416 工作原理:在求和单元,来自运行等级模式曲线计算模块的目标速度信号和实际速度信号相加,共同输入 PID 速度控制器,这个控制器把收集到的实际速度信号和一个受控对象()=10.42+0 交通运输自动控制原理课程设计报告 3 目标速度信号进行比较,然后把这个差别用于计
6、算新的输入值,这个新的输入值的目的是可以让系统的信号达到或者保持在目标速度。接着新的输入信号传递到列车,通过相关设备调整列车实际运行速度,最后设备观测的实际速度信号又反馈回求和单元。整个控制过程即反馈控制原理:由相关设备获得被控对象(列车)的实际速度信号,通过 PID 控制器比较计算,输出调整信号又作用于被控对象调整实际运行速度。2 自动控制系统仿真实验分析 21 系统仿真实验题目 1 使用 Matlab 软件,对下图所示交通控制系统的特性进行仿真实验分析。(1)绘制 K1=200 时的开环对数频率特性图(Bode图),仿真分析闭环系统稳定裕度。(2)绘制关于参数 K1 的闭环系统的根轨迹图,
7、仿真分析闭环系统的稳定性。2.1.1 实验步骤(1)第一步:根据题目中的框图图求出其开环传递函数。第二步:由求出来的开环传递函数运用 Matlab 软件画出 Bode 图。被控对象 列车或机动车 速度 K1 1/1/(s+K2=_ _ 实际运行位置变量Y(S)位置目标变量 R(S)列车或机动车运行(位置)自动交通运输自动控制原理课程设计报告 4 第三步:然后用 Matlab 对 bode 图求解稳定裕度。(2)第一步:由题求出其闭环系统的开环传递函数 第二步:运用函数语句 rlocus(sys)由开环传递函数画出其闭环系统的根轨迹图。第三步:分析根轨迹图,讨论系统稳定性。2.1.2 实验分析计
8、算依据 由框图计算系统开环传递函数:被控对象传递函数为:F(s)=1/(s2+10*s+21)k1=200 时系统开环传递函数为:G(s)=k1*F(s)*1/s=200/(s*(s2+10*s+21)系统开环传递函数为:G=k1*1/(s*(s2+10*s+21)2.1.3 结论图表数据分析(1)利用 matlab 绘制开环对数频率特性图:-150-100-50050Magnitude(dB)10-1100101102103-270-225-180-135-90Phase(deg)Bode DiagramFrequency (rad/s)交通运输自动控制原理课程设计报告 5 上图为幅频特性曲
9、线图,下图为相频特性曲线图 同时利用 matlab 仿真分析闭环系统的稳定裕度:由图形可知,幅值裕度 Gm 为 0.424dB,相角裕度 Pm 为 1.29deg 工程上推荐幅值裕度大于 6dB,相角裕度 30-60deg.所以该系统稳定裕度较小,系统已经濒临不稳定,系统的灵敏性和快速性较强,同时系统的振荡也较激烈。(2)利用开环传递函数 1/(s*(s2+10*s+21),用 rlocus(sys)语句绘制闭环系统根轨迹图,在根轨迹图上任意选择轨迹上某点就可以得到对应的参数 K1=Gain.-150-100-50050Magnitude(dB)10-1100101102103-270-225
10、-180-135-90Phase(deg)Bode DiagramGm=0.424 dB(at 4.58 rad/s),Pm=1.29 deg(at 4.47 rad/s)Frequency (rad/s)交通运输自动控制原理课程设计报告 6 由根轨迹图我们可以发现,在虚轴上有 3 个极点,粗略估计分别当 K1=209,0,209时取得。说明系统稳定的范围在 K1 取 0209 左右,当 K1 大于 209 后系统不稳定。22 系统仿真实验题目 2 司机驾驶汽车的模型如下图所示,其中,K=5.3。(a)若反应时间 T=0,求出系统的闭环频率响应、增益裕度和相角裕度;(b)当 T=0.1s 时,
11、估算系统的相角裕度;(c)为使系统临界稳定(即相角裕度为 00),计算所需的反应时间。Root LocusReal Axis(seconds-1)Imaginary Axis(seconds-1)-25-20-15-10-50510-20-15-10-505101520System:GGain:209Pole:-0.00217+4.58iDamping:0.000475Overshoot(%):99.9Frequency(rad/s):4.58System:GGain:209Pole:-0.00474-4.57iDamping:0.00104Overshoot(%):99.7Frequency
12、(rad/s):4.57System:GGain:0Pole:0Damping:-1Overshoot(%):0Frequency(rad/s):0System:GGain:799Pole:1.54+7.67iDamping:-0.196Overshoot(%):188Frequency(rad/s):7.82System:GGain:852Pole:1.63-7.85iDamping:-0.203Overshoot(%):192Frequency(rad/s):8.02交通运输自动控制原理课程设计报告 7 2.2.1 实验步骤(a)根据题目框图求出系统开环传递函数;用 matlab 绘制开环
13、 bode 图求闭环频率特性、增益裕度、相角裕度。(b)根据题目框图求出系统开环传递函数;并且用 matlab 绘制出相应的 Bode图求出相角裕度。(c)利用 matlab 求出系统相角裕度的具体数值,令反应时间为一系列连续取值,编写循环程序,找到相角裕度为零时的反应时间。2.2.2 实验分析计算依据 T=0 时系统开环传递函数:G=(5.3*(s2+0.8*s+0.32)/(s3)T=0 时系统闭环传递函数:G=5.3/(s3+5.3*s2+5.3*0.8*s+5.3*0.32)T=0.1 时系统开环传递函数:G=exp(-0.1*s)*5.3*(s2+0.8*s+0.32)/s3 开环
14、G=exp(-t*s)*5.3*(s2+0.8*s+0.32)/s3 2.2.3 结论图表数据分析(a)系统的闭环频率响应、增益裕度和相角裕度 方向 汽车 预测器 C(s)横向R(s)预期交通运输自动控制原理课程设计报告 8 由图可知幅值裕度 Gm 为-22.4dB,相角裕度 Pm 为 81.3deg 系统不稳定。(b)T=0.1 时估算系统相角裕度 -50050100150Magnitude(dB)10-210-1100101102-270-225-180-135-90Phase(deg)Bode DiagramGm=-22.4 dB(at 0.566 rad/s),Pm=81.3 deg(
15、at 5.3 rad/s)Frequency (rad/s)交通运输自动控制原理课程设计报告 9 由上图可知,当 T=0.1 时估算系统相角裕度 Pm=51deg(c)为使系统临界稳定(即相角裕度为 00),计算所需的反应时间。通过前期工作循环迭代工作,大概确定满足要求的最优反应时间在 0.1 到 0.5 之间,将T 值范围确定在 0.1-0.5 步长取 0.0001,带入程序求最优值。-50050100150Magnitude(dB)10-210-1100101102-720-540-360-1800Phase(deg)Bode DiagramGm=9.14 dB(at 15.2 rad/s
16、),Pm=51 deg(at 5.3 rad/s)Frequency (rad/s)交通运输自动控制原理课程设计报告 10 由循环程序求出临界反应时间为 T=0.2677 此时系统 Pm 约等于 0,系统处于临界稳定。23 系统仿真实验题目 3 人们常用电子电路和计算机来控制汽车。下图给出了一个汽车驾驶控制系统的例子,其中,控制杆负责操纵车轮。假定司机的反应时间 T=0.2s。(a)用 Bode 图确定增益 K 的取值,使闭环系统的谐振峰 Mp 不大于 2dB;(b)根据 Mp 或相角裕度分别估计系统的阻尼系数,若所得结果不同,请解释原因;(c)估计闭环系统的带宽。-50050100150Ma
17、gnitude(dB)10-210-1100101102-1800-1440-1080-720-3600Phase(deg)Bode DiagramGm=-0.00569 dB(at 5.3 rad/s),Pm=-0.00794 deg(at 5.3 rad/s)Frequency (rad/s)交通运输自动控制原理课程设计报告 11 2.3.1 实验步骤(a)使用循环求解法。前期试凑出 K 值的大概范围,然后在此范围内连续取一系列的K 值,找出符合条件的最优 K 值。求出 K 的取值范围。(b)取 K=2,求出此时系统的 Mp 与 Pm 分别利用两种公式求出系统的阻尼系数,比较差异,分析误差
18、原因。(c)利用系统闭环传递函数,求出系统带宽。控制系统的闭环频率响应包括带宽和谐振峰值,带宽指闭环系统的 bode 图中幅频特性曲线下降到3 分贝所对应的频率,谐振峰值指幅频特性曲线图中最大幅频值。bandwidth(sys)可以直接求出带宽 2.3.2 实验步骤实验分析计算依据 系统闭环传递函数:G=k*exp(-0.2*s)/(0.1*s2+s+k*exp(-0.2*s)系统 t=2 时闭环传递函数:G=2*exp(-0.2*s)/(0.1*s2+s+2*exp(-0.2*s)系统 t=2 时开环传递函数:G=2*exp(-0.2*s)/(0.1*s2+s)2.3.3 结论图表数据分析(
19、a)用 Bode 图确定增益 K 的取值,使闭环系统的谐振峰 Mp 不大于 2dB;人的反 车和 控制R(s)Y(s)行驶交通运输自动控制原理课程设计报告 12 由循环程序得最优 K 值为 2.4780,此时谐振峰值为 2 所以 K 的取值范围为(0,2.4780)(b)根据 Mp 或相角裕度分别估计系统的阻尼系数,若所得结果不同,请解释原因;由程序求出此时系统 Mp=0.4837dB,Pm=3.0576deg 阻尼系数 Mp=12 1 2 Pm=tan121+44 22 由谐振峰值求得阻尼系数为:=由相角裕度求得阻尼系数为:=Bode DiagramFrequency (rad/s)10-1
20、100101102103-100-80-60-40-20020System:GPeak gain(dB):2At frequency(rad/s):3.14Magnitude(dB)交通运输自动控制原理课程设计报告 13 误差原因:(c)估计闭环系统的带宽。设 K=2。此时闭环系统带宽用 bandwidth(sys)语句求出。同时绘制 bode 图,由图形求带宽,验证结果。由函数语句求出系统带宽为(0,4.2744)rad/s 由闭环系统 bode 图可知,幅值-3dB 对应的频率为带宽频率 4.27rad/s 与函数求出的带宽值符合 附录 A 程序源代码 系统仿真实验题目 1 程序源代码:1
21、.Bode 图绘制代码:s=tf(s)Bode DiagramFrequency (rad/s)10-1100101102103-100-80-60-40-20020Magnitude(dB)System:GFrequency(rad/s):4.27Magnitude(dB):-3交通运输自动控制原理课程设计报告 14 G=200/(s*(s2+10*s+21)bode(G)grid 2.Bode 图稳定裕度代码:s=tf(s)G=200/(s*(s2+10*s+21)margin(G)3.根轨迹图源代码:s=tf(s)G=1/(s*(s2+10*s+21)rlocus(G)系统仿真实验题目
22、2 程序源代码:1.T=0 求闭环频率响应、增益裕度和相角裕度:s=tf(s);G=(5.3*(s2+0.8*s+0.32)/(s3);margin(G);2.T=0.1 求相角裕度:s=tf(s);G=exp(-0.1*s)*5.3*(s2+0.8*s+0.32)/s3;margin(G);3.系统临界稳定,计算所需反应时间:clc;clear;t=0.1:0.0001:0.5;%t 的取值范围 s=tf(s);for i=1:4000 G=exp(-t(i)*s)*5.3*(s2+0.8*s+0.32)/s3%传递函数 交通运输自动控制原理课程设计报告 15 Gm,Pm,Wcg,Wcp=m
23、argin(G);if 0Pm=2;%谐振峰判断条件 break end K=k(i);%最优 K 值 end bode(G)%画出 bode 图 2.求 K=2 时 闭环系统谐振峰值 s=tf(s);G=2*exp(-0.2*s)/(0.1*s2+s+2*exp(-0.2*s);m,p,w,=bode(G);交通运输自动控制原理课程设计报告 16 mr=max(m);Mp=20*log10(mr);Mp 求 K=2 时 闭环系统谐振相角裕度 s=tf(s);G=2*exp(-0.2*s)/(0.1*s2+s);Pm=margin(G);Pm 3.求 K=2 时闭环系统带宽:s=tf(s);G=2*exp(-0.2*s)/(0.1*s2+s+2*exp(-0.2*s);bandwidth(G)附录 B 交通运输自动控制原理课程设计报告 17 参考文献 1 石