高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第2课时范围最值问题教师用书.doc

上传人:随风 文档编号:733645 上传时间:2019-06-07 格式:DOC 页数:14 大小:84.50KB
返回 下载 相关 举报
高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第2课时范围最值问题教师用书.doc_第1页
第1页 / 共14页
高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第2课时范围最值问题教师用书.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第2课时范围最值问题教师用书.doc》由会员分享,可在线阅读,更多相关《高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第2课时范围最值问题教师用书.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 / 14【2019【2019 最新最新】精选高考数学大一轮复习第九章平面解析几精选高考数学大一轮复习第九章平面解析几何何 9-99-9 圆锥曲线的综合问题第圆锥曲线的综合问题第 2 2 课时范围最值问题教师用课时范围最值问题教师用书书题型一 范围问题例 1 (2015天津)已知椭圆1(ab0)的左焦点为 F(c,0),离心率为,点 M 在椭圆上且位于第一象限,直线 FM 被圆 x2y2截得的线段的长为 c,|FM|.(1)求直线 FM 的斜率;(2)求椭圆的方程;(3)设动点 P 在椭圆上,若直线 FP 的斜率大于,求直线 OP(O 为原点)的斜率的取值范围解 (1)由已知,有,又由 a2

2、b2c2,可得 a23c2,b22c2.设直线 FM 的斜率为 k(k0),F(c,0),则直线 FM 的方程为yk(xc)由已知,有 222,解得 k.(2)由(1)得椭圆方程为1,直线 FM 的方程为 y(xc),两个方程联立,消去 y,整理得 3x22cx5c20,解得 xc 或xc.2 / 14因为点 M 在第一象限,可得 M 的坐标为.由|FM| .解得 c1,所以椭圆的方程为1.(3)设点 P 的坐标为(x,y),直线 FP 的斜率为 t,得 t,即直线 FP 的方程为 yt(x1)(x1),与椭圆方程联立,Error!消去 y,整理得 2x23t2(x1)26,又由已知,得 t

3、,解得x1 或1x0.设直线 OP 的斜率为 m,得 m,即 ymx(x0),与椭圆方程联立,整理得 m2.当 x时,有 yt(x1)0,因此 m0,于是 m ,得 m.当 x(1,0)时,有 yt(x1)0.因此 m0,于是 m ,得 m.综上,直线 OP 的斜率的取值范围是.思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3 / 14(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等

4、式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围(2016余姚模拟)已知椭圆 C:1(ab0)与双曲线y21 的离心率互为倒数,且直线 xy20 经过椭圆的右顶点(1)求椭圆 C 的标准方程;(2)设不过原点 O 的直线与椭圆 C 交于 M,N 两点,且直线OM,MN,ON 的斜率依次成等比数列,求OMN 面积的取值范围解 (1)双曲线的离心率为,椭圆的离心率 e.又直线 xy20 经过椭圆的右顶点,右顶点为(2,0),即 a2,c,b1,椭圆方程为y21.(2)由题意可设直线的方程为 ykxm(k0,m0),M(x1,y1

5、),N(x2,y2)联立Error!消去 y,并整理得(14k2)x28kmx4(m21)0,则 x1x2,x1x2,于是 y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2.4 / 14又直线 OM,MN,ON 的斜率依次成等比数列,故k2x1x2kmx1x2m2 x1x2k2m20.由 m0 得 k2,解得 k.又由 64k2m216(14k2)(m21)16(4k2m21)0,得 00)过点 F(0,1),圆心 M 的轨迹为 C.(1)求轨迹 C 的方程;(2)设 P 为直线 l:xy20 上的点,过点 P 作曲线 C 的两条切线PA,PB,当点 P(x0,y0)为直线 l

6、 上的定点时,求直线 AB 的方程;(3)当点 P 在直线 l 上移动时,求|AF|BF|的最小值解 (1)依题意,由圆过定点 F 可知轨迹 C 的方程为 x24y.(2)抛物线 C 的方程为 x24y,即 yx2,求导得 yx.设 A(x1,y1),B(x2,y2)(其中 y1,y2),则切线 PA,PB 的斜率分别为 x1,x2,所以切线 PA 的方程为 yy1(xx1),即 yxy1,即 x1x2y2y10.同理可得切线 PB 的方程为 x2x2y2y20.8 / 14因为切线 PA,PB 均过点 P(x0,y0),所以 x1x02y02y10,x2x02y02y20,所以(x1,y1)

7、,(x2,y2)为方程 x0x2y02y0 的两组解所以直线 AB 的方程为 x0x2y2y00.(3)由抛物线定义可知|AF|y11,|BF|y21,所以|AF|BF|(y11)(y21)y1y2(y1y2)1,联立方程消去 x 整理得 y2(2y0x)yy0,由一元二次方程根与系数的关系可得 y1y2x2y0,y1y2y,所以|AF|BF|y1y2(y1y2)1yx2y01.又点 P(x0,y0)在直线 l 上,所以 x0y02,所以 yx2y012y2y052(y0)2,所以当 y0时,|AF|BF|取得最小值,且最小值为.1设抛物线 y28x 的准线与 x 轴交于点 Q,若过点 Q 的

8、直线 l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A. B2,2C1,1 D4,4答案 C解析 Q(2,0),设直线 l 的方程为 yk(x2),代入抛物线方程,消去 y 整理得 k2x2(4k28)x4k20,由 (4k28)24k24k264(1k2)0,解得1k1.2已知 P 为双曲线 C:1 上的点,点 M 满足|1,且0,9 / 14则当|取得最小值时点 P 到双曲线 C 的渐近线的距离为( )A. B. C4 D5答案 B解析 由0,得 OMPM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点 P 的位置为双曲线的顶点(3,0

9、),而双曲线的渐近线为 4x3y0,所求的距离d,故选 B.3已知 F1,F2 分别是双曲线1(a0,b0)的左,右焦点,对于左支上任意一点 P 都有|PF2|28a|PF1|(a 为实半轴长),则此双曲线的离心率 e 的取值范围是( )A(1,) B(2,3C(1,3 D(1,2答案 C解析 由 P 是双曲线左支上任意一点及双曲线的定义,得|PF2|2a|PF1|,所以|PF1|4a8a,所以|PF1|2a,|PF2|4a,在PF1F2 中,|PF1|PF2|F1F2|,即 2a4a2c,所以 e3.又 e1,所以 10 得 m22,1,即 e,而 00),A(,y1),B(,y2),F(1

10、,0),联立消 x,得 y24my80,则Error!则(1,y1)(1,y2)(1)(1)y1y21y1y241811,得 m21,又因为 m0,故 m1,即直线 AB 的方程为 xy2,即 xy20.(2)设 C(,y0),联立解得 y1,222,12 / 14故 220,b0)由已知得 a,c2,又 a2b2c2,得 b21,双曲线 C 的方程为y21.(2)联立Error!整理得(13k2)x26kmx3m230.直线与双曲线有两个不同的交点,Error!可得 m23k21 且 k2,设 M(x1,y1),N(x2,y2),MN 的中点为 B(x0,y0),则 x1x2,x0,y0kx

11、0m.13 / 14由题意,ABMN,kAB(k0,m0)整理得 3k24m1,将代入,得 m24m0,m4.又 3k24m10(k0),即 m.m 的取值范围是(4,)9已知椭圆 C1:1(ab0)的右顶点为 A(1,0),过 C1 的焦点且垂直长轴的弦长为 1.(1)求椭圆 C1 的方程;(2)设点 P 在抛物线 C2:yx2h(hR)上,C2 在点 P 处的切线与C1 交于点 M,N.当线段 AP 的中点与 MN 的中点的横坐标相等时,求h 的最小值解 (1)由题意,得从而Error!因此,所求的椭圆 C1 的方程为x21.(2)如图,设 M(x1,y1),N(x2,y2),P(t,t2

12、h),则抛物线 C2 在点 P 处的切线斜率为 y.直线 MN 的方程为y2txt2h.将上式代入椭圆 C1 的方程中,得 4x2(2txt2h)240,即 4(1t2)x24t(t2h)x(t2h)240.因为直线 MN 与椭圆 C1 有两个不同的交点,14 / 14所以式中的 116t42(h2)t2h240.设线段 MN 的中点的横坐标是 x3,则 x3.设线段 PA 的中点的横坐标是 x4,则 x4.由题意,得 x3x4,即 t2(1h)t10.由式中的 2(1h)240,得 h1 或 h3.当 h3 时,h20,4h20,则不等式不成立,所以 h1.当 h1 时,代入方程得 t1,将 h1,t1 代入不等式,检验成立所以,h 的最小值为 1.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁