《新型嵌入式系统电源监控模块设计.docx》由会员分享,可在线阅读,更多相关《新型嵌入式系统电源监控模块设计.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、新型嵌入式系统电源监控模块设计wuyue导语:针对这一现象未太多的考虑系统工作时电源模块输出电压能否准确以及能否让各种器件正常运行的问题,本文给出一种应用于某嵌入式系统的电源监控模块的设计方案以及详细的硬件实现。1引言对供电电源要求比拟严格通常都需采用独立的稳压器件供电。在嵌入式系统硬件设计中,通常在电源模块的沟通输入端为供电提供过压保护,但在直流输出端一般只是采用稳压器件为系统提供正常的供电,并提供一个发光二极管检测直流电压的有无,并未太多的考虑系统工作时电源模块输出电压能否准确以及能否让各种器件正常运行。针对这一现象,这里给出一种应用于某嵌入式系统的监控模块的设计方案以及详细的硬件实现。2
2、系统整体设计思想中供电电压过高会损坏器件,而过低集成电路则导致系统无法正常工作。因而电源监控模块设计需遵循下面原则:(1)保护原则电压过高,必然会烧坏器件;有时,电压过低,由于系统设计的复杂性,可能不仅会影响器件的正常工作,还会对器件造成一定损害。因而,电源监控模块不仅需要实现过压保护,还需要实现欠压保护。(2)预警原则在系统工作前,需要对供电电压进行预检测,判定电压能否符合设定值,并能给出正确的判定指示。同时,在系统工作时,也应该能够实时的对工作电压进行检测判定,同步指示系统供电能否正常。在某无线通信设备便携式检测平台系统中,采用ARM与FPGA相结合的主控模块,主控模块需+5V、+33V、
3、+25V和+18V4种供电电压,电源监控模块应能提供两种主要功能:在系统启动前能够对电源供电模块的工作状况进行自检,并能实时的指示电源模块的工作状态;对系统中的其他模块提供实时的欠压过压保护。3主要器件选择及工作原理31电源监控器件该系统设计的电源模块采用新型电压监测器件ADM1184。该器件能够准确监测核心器件的工作电压,以确保其在容许的电压范围内运行。ADM1184将准确度改善至低于08使其符合目前对于处理器监测需要的要求,因而该器件能广泛用于如便携式无线通信检测平台等敏感且具有高可靠度的应用装置中,使得系统更安全、更具可靠性,进而到达最优的性能。同构型的多重电压监测器与序列发生器通常只能
4、到达大于15的准确度位准,要监测在低容错度以及较窄运作波段下进行低电压核心供给的处理器,难以符合需求。ADM1184拥有4组具有06V参考电压的精细比拟器,用来监测独立的电压通道。该电压监测器件能够在2755V的供电电源范围中工作,且具有4组能够加以编程设置的输入,以监测外部不同电压位准。32稳压器件考虑到系统各模块所需+5V电源的电流在2A,因而需要选择一种输出电流较大的稳压器,产生+5V电压的器件,这里选用LM2676,如图1所示。LM2676是一种开关型集成稳压器,可提供一个驱动能力达3A,可逐级下降的开关稳压器的所有功能,具有良好的线性和负载调节特性:使用一只低导通电阻的DMOS电源开
5、关获得高输出效率;固定输出33V,5V和12V电压,或调节输出。LM2676系列器件内置热击穿保护电路、限流电路和开关控制输入,可将供电降低至50A静态电流的休眠状态。该器件具有150m的DMOS输出开关电阻,输出电压额定偏差为+2,时钟频率偏差为+11,效率高达94,使用方便。该系统中,主电源为5V,从5V到33V、25V的转换一般使用LDO(低压线性稳压器件)。在此选用MIC29302器件,这是一种高精度,低漏电稳压器件,其输出电流达800mA,可知足系统电源要求,其主要电路如图2所示。33模块工作原理图3为ADM1184监视4个通道的一个应用。在该应用中,ADM1184依次开启3个稳压器
6、,当所有的电源供电稳定后产生供电正常信号来开启控制器。图3中,33V主电源通过引脚VCC给器件供电。引脚VIN1监视33V主电源。OUT1连接到第1个稳压器的使能端,在VIN1脚电压到达06V之前,该引脚接地,使得稳压器件不工作。当系统的主电压到达29V时,VIN1引脚检测到06V。使得OUT1引脚电平置高,驱动稳压器件1的使能脚变高,器件正常输出。该稳压器输出的25V电压被VIN2脚检测到,当该电压超过管脚设定的门限电平后,OUT2引脚电平置高,驱动稳压器2的使能引脚变高,器件2正常输出。该工作原理在其他的输入和输出引脚也是同样的。每一个电压通道都通过OUTx引脚来开启,通过VIN(x+1)
7、进行监控。当所有监控的电压都超过预定的门限电平后,PWRGD信号在经过190ms延时后置高。图4为电压输入引脚的详细配置原理。每个引脚都连接一个精度比拟器,每个比拟器都有一个06V的基准电压,最大精度误差为08。设计中,可通过连接到VIN1,VIN2,VIN3和VIN4引脚的电阻网络设置被监控通道的切换点。4个比拟器监视4个电压通道。4个可调输入端(VIN1,VIN2,VIN3,VIN)的阈值电平为06V。当需监控一个高于06V的电压信号时,可采用如图4所示的电阻分压网络。图4中,VIN1引脚监测一个+33V的电压信号。外接的分压电阻将+33V电压分压后接到VIN1引脚。分压电阻的比例要使当主电压在上电到达预定电平(低于正常5V电平)时,VIN1引脚上的电压正好是06V。R7为46k,R35为12k,因而,在29V下面的电压都不能使得第1个比拟器的输出置高。4结束语该监控模块设计是建立在某无线通信综合检测平台设计应用基础上的一种方案。该方案在对电压信号的监控上采用新型监控器件,最终测试后到达预定监控和保护要求。该方案可为嵌入式系统的监控设计提供一定参考。0