《基于多样性优化的粒子滤波算法研究.docx》由会员分享,可在线阅读,更多相关《基于多样性优化的粒子滤波算法研究.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、基于多样性优化的粒子滤波算法研究由表1可以看出,本文所采用的算法相对于PF和PSO-PF算法,在运行经过中可以产生较小的误差,算法运行时间较短,失误率小,进而有着良好的状态估计效果和良好的实时性。5.结论本文所提出的基于粒子多样性优化的粒子滤波算法,融入了基于种群优化机制的布谷鸟搜索算法,克制了传统粒子滤波算法由于自身存在的粒子退化问题而不可以预备的进展状态估计的难题。仿真实验中通过与传统PF算法以及PSO-PF算法在目的的状态估计、粒子退化数目、运行时间以及产生的均方根误差比拟得出:采用本文所提出的算法进展状态估计更可以接近目的的真实状态,有着很高的状态估测效率;充分保存粒子多样性以及粒子样
2、本数目的同时有着良好的实时性和较小的误差率。参考文献(References): 1XuX,LiB.AdaptiveRaoBlackwellizedParticleFilterandItsEvaluationforTrackinginSurveillanceJ.Proceedingsof200716thIEEEInternationalConferenceonImage,2007,16(3):838-849. 2LepoutreA,RabasteO,LeGlandF.AparticlefilterfortargetarrivaldetectionandtrackinginTrack-Before
3、DetectC.Proceedingsof20218thIEEEInternationalConferenceonSensorDataFusion:Trends,Solutions,Applications,2021:13-18. 3HouYB,TangSY.BreedingEstimatedParticleFilterJ.AdvancedMaterialsResearch,2021:332-337. 4PrakashJ,GopaluniRB,PatwardhanSC,etal.NonlinearBayesianstateestimation:ReviewandrecenttrendsC.Pr
4、oceedingsof202015thIEEEInternationalConferenceonAdvancedControlofIndustrialProcesses,2020:450-455. 5El-DahshanEA.GeneticalgorithmandwavelethybridschemeforECGsignaldenoisingJ.TelecommunicationSystems,2020,46(3):209-215. 6刘长平,叶春明.一种新奇的仿生群智能优化算法:萤火虫算法J.计算机应用研究,2020,(9):3295-3297 7BagheriA,PeyhaniHM,Akb
5、ariM.FinancialforecastingusingANFISnetworkswithQuantum-behavedParticleSwarmOptimiza-tionJ.ExpertSystemswithApplications,2021,41:62356250. 8Jr.IF,YangX,FisterD,etal.CuckooSearchandFireflyAlgorithmM.SpringerInternationalPublishing,2021:49-62. 9ValianE,TavakoliS,MohannaS,etal.Improvedcuckoosearchforrel
6、iabilityoptimizationproblemsJ.ComputersandIndustrialEngineering,2021,(1):459-468. 10MohamadA,ZainAM,BazinNEN,etal.CuckooSearchAlgorithmforOptimizationProblems-ALiteratureReviewJ.Appli-edMechanicsandMaterials,2021:502-506. 11宋玉坚,叶春明,黄佐钘.多资源平衡优化的布谷鸟算法J.计算机应用,2021,34(1):189-193. 12DasS,DasguptaP,PanigrahiBK.Swarm,Evolutionary,andMemeticComputingM.SpringerInternationalPublishing,2021:515-526. 13SenthilnathJ,DasV,N.OmkarS,etal.ClusteringUsingLevyFlightCuckooSearchM.Proceedingsof20217thIEEEInternati-ionalConferenceonBio-InspiredComputing:TheoriesandApplications.India,IEEEPress,2021:65-75.