《人教版八年级下册数学优秀教案【优秀5篇】.docx》由会员分享,可在线阅读,更多相关《人教版八年级下册数学优秀教案【优秀5篇】.docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、该文本为Word版,下载可编辑人教版八年级下册数学优秀教案【优秀5篇】 教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,教案应是与时俱进的。这里给大家分享一些关于人教版八年级下册数学优秀教案,方便大家学习。下面是白话文的我为您带来的人教版八年级下册数学优秀教案【优秀5篇】,希望大家可以喜欢并分享出去。 2023年八年级下册最新湘教版数学教案 篇一 一、学习目标:1.多项式除以单项式的运算法则及其应用。 2、多项式除以单项式的运算算理。 二、重点难点: 重点: 多项式除以单项式的运算法则及其应用 难点: 探索多项式与单项式相除的运算法则的过程 三、合
2、作学习: (一) 回顾单项式除以单项式法则 (二) 学生动手,探究新课 1、 计算下列各式: (1)(am+bm)m (2)(a2+ab)a (3)(4x2y+2xy2)2xy. 2、 提问:说说你是怎样计算的 还有什么发现吗? (三) 总结法则 1、 多项式除以单项式:先把这个多项式的每一项除以_,再把所得的商_ 2、 本质:把多项式除以单项式转化成_ 四、精讲精练 例:(1)(12a3-6a2+3a)3a; (2)(21x4y3-35x3y2+7x2y2)(-7x2y); (3)(x+y)2-y(2x+y)-8x2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)(-2ab2
3、) 随堂练习: 教科书 练习 五、小结 1、单项式的除法法则 2、应用单项式除法法则应注意: A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号 B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数; C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏; D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。 E、多项式除以单项式法则 八年级数学下册教案 篇二 教学目标: 1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。 2、在加
4、权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。 3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。 4、能利和计算器求一组数据的算术平均数。 教学重点: 体会平均数、中位数、众数在具体情境中的意义和应用。 教学难点: 对于平均数、中位数、众数在不同情境中的应用。 教学方法: 归纳教学法。 教学过程: 一、知识回顾与思考 1、平均数、中位数、众数的概念及举例。 一般地对于n个数X1Xn把(X1+X2+Xn)叫做这n个数的算术平均数,简称平均数。 如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分
5、别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。 中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。 众数就是一组数据中出现次数最多的那个数据。 如3,2,3,5,3,4中3是众数。 2、平均数、中位数和众数的特征: (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。 (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。 (3)中位数的优点是计算简单,受极端数字影响较小,但不能充
6、分利用所有数字的信息。 (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。 3、算术平均数和加权平均数有什么区别和联系: 算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。 4、利用计算器求一组数据的平均数。 利用科学计算器求平均数的方法计算平均数。 二、例题讲解: 某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,()85分,小亮这学期的数
7、学总评成绩是多少? 三、课堂练习:复习题A组 四、小结: 1、掌握平均数、中位数与众数的概念及计算。 2、理解算术平均数与加权平均数的联系与区别。 五、作业:复习题B组、C组(选做) 初二下册数学教案 篇三 一、创设情境 导入新课 1、介绍七巧板 师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗? 一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。 2、导入:今天就让我们一起来认识其中的一个图形平行四边形。(出示课题) 【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热
8、情。】 二、尝试探索 建立模型 (一)认一认 形成表象 师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗? 不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上) (二)找一找 感知特征 1、在例题图中找平行四边形 师:老师这有几幅图,你能在这上面找到平行四边形吗? 2、寻找生活中的平行四边形 师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架) (三)做一做 探究特征 1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗? 2、在小组里交流你是怎么做的并选代表在班级里汇报。 3、刚才同学们成功的
9、做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流) 4、全班交流,师小结平行四边形的。特征。(两组对边分别平行并且相等;对角相等;内角和是360度。) 【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】 (四)练一练 巩固表象 完成想想做做第1、2题 (五)画一画 认识高、底 1、出示例题,你能量出平行四边形两条红线间的距离吗
10、?(学生在自制的图上画)说说你是怎么量的? 2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。 3、平行四边形的高和底书上是怎么说的呢?(学生看书) 4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动) 5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系) 6、画高(想想做做第5题)(提醒学生画上直角标记) 三、动手操作 巩固深化 1、完成想想做做第3、4题 第3题:拼一拼、移一移,说说怎样移的? 第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边
11、形的纸试一试。 2、完成想想做做第6题 (课前做好,课上活动。) (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。 (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了? (3)得出平行四边形的特性 师再捏住平行四边形的对角向里推。看你发现了什么? 师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形) (4)特性的应用 师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”) 【设计意图:】 四
12、、畅谈收获 拓展延伸 1、师:今天这节课你有什么收获吗? 2、用你手中的七巧板拼我们学过的图形。 3、寻找平行四边形容易变形的特性在生活中的应用。 【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】 八年级数学下册教案 篇四 一、教学目标 1、掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程。 2、能够将一元二次方程化为一般形式并确定a,b,c的值。 二、(重)难点预见 重
13、点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程。 难点:能够将一元二次方程化为一般形式并确定a,b,c的值。 三、学法指导 结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务。 四、教学过程 开场白设计: 一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用。什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习一元二次方程这一章,今天我们来学习第一节课,同学们肯定有很多新的收获。 1、忆一忆 在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次
14、方程吗? 学法指导: 本节课学习一元二次方程先让学生回忆一元一次方程。学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果。 2、想一想 请同学们根据题意,只列出方程,不进行解答: (1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽。 (2)两个连续正整数的平方和是313,求这两个正整数。 (3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长。 预习困难预见: (1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了。 (2)学生在解答第(3
15、)题时,设未知数时忘记带单位。 (3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间。 改进措施: 教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑。 3、议一议 请同学们将上面的方程按照以下要求进行整理: (1)使方程的右边为0(2)方程的左边按x的降幂排列。我们会得到: 你能发现上面三个方程有什么共同点? _叫做一元二次方程。在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面? 学法指导 学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法。 4、试一试 下面方程是一元二次方
16、程吗?为什么? ax-x+2=0;-x+x=0;x=1;-2x+1=0;x+y-1=0; 2x+3=2-x;y-4y=0 方法提升: 由一元二次方程的定义可知,只有同时满足下列三个条件:整式方程;只含有一个未知数;未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程。 口诀生成: 判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现。 5、学一学 一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为
17、二次项系数,一次项系数。你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来。 2023年八年级下册最新湘教版数学教案 篇五 教学目的 1、 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。 2、 熟识等边三角形的性质及判定。 2、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。 教学重点: 等腰三角形的性质及其应用。 教学难点: 简洁的逻辑推理。 教学过程 一、复习巩固 1、叙述等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段B
18、D与CD也重合,所以B=C。 等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此“三线合一”。 2、若等腰三角形的两边长为3和4,则其周长为多少? 二、新课 在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢? 1、请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。 2、你能否用已知的知识,通过推理得到你的猜想是
19、正确的? 等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到A=B=C,又由A+B+C=180,从而推出A=B=C=60。 3、上面的条件和结论如何叙述? 等边三角形的各角都相等,并且每一个角都等于60。 等边三角形是轴对称图形吗?如果是,有几条对称轴? 等边三角形也称为正三角形。 例1.在ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的度数。 分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是ABC的顶角平分线,底边上的高,从而ADC=90,l=BAC,由于C=B=30,BAC可求,所以1可求。 问题1:本题若将D是BC边
20、上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样? 问题2:求1是否还有其它方法? 三、练习巩固 1、判断下列命题,对的打“”,错的打“”。 a.等腰三角形的角平分线,中线和高互相重合( ) b.有一个角是60的等腰三角形,其它两个内角也为60( ) 2、如图(2),在ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。 3.P54练习1、2。 四、小结 由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。 五、作业: 1.课本P57第7,9题。 2、补充:如图(3),ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。 第 23 页 共 23 页