《工程力学教学课件第3章平面任意力系.ppt》由会员分享,可在线阅读,更多相关《工程力学教学课件第3章平面任意力系.ppt(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章第三章 平面任意力系平面任意力系 平面任意力系向作用面内一点的简化平面任意力系向作用面内一点的简化 平面任意力系的简化结果平面任意力系的简化结果 平面任意力系的平衡条件和平衡方程平面任意力系的平衡条件和平衡方程 平面平行力系平面平行力系 物体系统的平衡、静定和静不定问题物体系统的平衡、静定和静不定问题 平面静定桁架的内力计算平面静定桁架的内力计算3.1平面任意力系向作用面内一点简化平面任意力系平面任意力系:作用在物体上的所有力的作用线作用在物体上的所有力的作用线都在同一平面内,作用线既不汇交也不全平行。都在同一平面内,作用线既不汇交也不全平行。一、概述一、概述例例3.1平面任意力系向作用
2、面内一点简化一、概述一、概述回顾与比较如何简化?平衡方程?3.1平面任意力系向作用面内一点简化二、力线平移定理二、力线平移定理 定理:定理:作用于刚体上的力可从其作用点平行作用于刚体上的力可从其作用点平行移到刚体内任一指定点,若不改变该力对刚体的移到刚体内任一指定点,若不改变该力对刚体的作用,则必须在该平面内附加一力偶(称为附加作用,则必须在该平面内附加一力偶(称为附加力偶),其力偶矩等于原力对指定点的矩。力偶),其力偶矩等于原力对指定点的矩。力线平移定理的逆步骤,也可把一个力和力线平移定理的逆步骤,也可把一个力和一个力偶合成一个力。一个力偶合成一个力。3.1平面任意力系向作用面内一点简化二、
3、力线平移定理二、力线平移定理为什么钳工攻丝时,为什么钳工攻丝时,两手要均匀用力?两手要均匀用力?3.1平面任意力系向作用面内一点简化三、平面任意力系向一点简化、主矢与主矩三、平面任意力系向一点简化、主矢与主矩 设平面任意力系如图(设平面任意力系如图(a),在平面内任取),在平面内任取一点一点O,称为,称为简化中心简化中心。可得平面汇交力系和附加力偶系如图(可得平面汇交力系和附加力偶系如图(b)。)。3.1平面任意力系向作用面内一点简化三、平面任意力系向一点简化、主矢与主矩三、平面任意力系向一点简化、主矢与主矩 对于图对于图(b)中的汇交力系,由平面汇交力系合中的汇交力系,由平面汇交力系合成的几
4、何法得:成的几何法得:是原力系的主矢。是原力系的主矢。显然,显然,主矢与简化中心的位置无关主矢与简化中心的位置无关。3.1平面任意力系向作用面内一点简化三、平面任意力系向一点简化、主矢与主矩三、平面任意力系向一点简化、主矢与主矩因此,因此,的大小和方向为:的大小和方向为:也可建立坐标,得:也可建立坐标,得:3.1平面任意力系向作用面内一点简化三、平面任意力系向一点简化、主矢与主矩三、平面任意力系向一点简化、主矢与主矩 对于图对于图(b)中的力偶系,由平面力偶系的合成理论:中的力偶系,由平面力偶系的合成理论:称为原力系对简化中心称为原力系对简化中心O的主矩。的主矩。一般来说,一般来说,主矩与简化
5、中心的位置有关。主矩与简化中心的位置有关。3.1平面任意力系向作用面内一点简化三、平面任意力系向一点简化、主矢与主矩三、平面任意力系向一点简化、主矢与主矩综上所述:综上所述:平面任意力系向任一点简化可得到一个平面任意力系向任一点简化可得到一个主矢和一个主矩。主矢与简化中心的位置无主矢和一个主矩。主矢与简化中心的位置无关,主矩与简化中心的位置有关。关,主矩与简化中心的位置有关。3.1平面任意力系向作用面内一点简化四、应用:平面固定端约束四、应用:平面固定端约束 物体的一部分固嵌在另一物体中所构成的约物体的一部分固嵌在另一物体中所构成的约束称为束称为平面固定端约束平面固定端约束。3.2一、简化结果
6、分析一、简化结果分析平 面任意力 系 的 简 化 结 果3.2平 面任意力 系 的 简 化 结 果一、简化结果分析一、简化结果分析1、主矢和主矩都等于零、主矢和主矩都等于零此时平面力系平衡。此时平面力系平衡。2、主矢等于零,主矩不等于零、主矢等于零,主矩不等于零3、主矢不等于零,主矩等于零主矢不等于零,主矩等于零 此时平面力系简化为一力偶。其力偶矩此时平面力系简化为一力偶。其力偶矩M等等于原力系对简化中心的主矩,即于原力系对简化中心的主矩,即 且且此时主矩与简化中心的位置无关。此时主矩与简化中心的位置无关。此时平面力系简化为一合力,作用在简化此时平面力系简化为一合力,作用在简化中心,其大小和方
7、向等于原力系的主矢,即中心,其大小和方向等于原力系的主矢,即3.2平 面任意力 系 的 简 化 结 果一、简化结果分析一、简化结果分析4、主矢和主矩均不等于零、主矢和主矩均不等于零 此时还可进一步简化为一合力。此时还可进一步简化为一合力。于是于是由主矩的定义知:由主矩的定义知:所以:结论:结论:平面任意力系的合力对作用面内任一点之矩平面任意力系的合力对作用面内任一点之矩等于力系中各力对同一点之矩的代数和。等于力系中各力对同一点之矩的代数和。即为平面即为平面一般力系的一般力系的合力矩定理合力矩定理。3.2平 面任意力 系 的 简 化 结 果二、平行分布线荷载的简化二、平行分布线荷载的简化 分布在
8、较大范围内,不能看作集中力的荷载分布在较大范围内,不能看作集中力的荷载称称分布荷载分布荷载。若分布荷载可以简化为沿物体中心。若分布荷载可以简化为沿物体中心线分布的平行力,则称此力系为线分布的平行力,则称此力系为平行分布线荷载平行分布线荷载,简称简称线荷载线荷载。结论:结论:1、合力的大小等、合力的大小等于线荷载所组成几何图形于线荷载所组成几何图形的面积。的面积。2、合力的方向与线荷载的方向相同。、合力的方向与线荷载的方向相同。3、合力的作用线通过荷载图的形心。、合力的作用线通过荷载图的形心。3.2平 面任意力 系 的 简 化 结 果二、平行分布线荷载的简化二、平行分布线荷载的简化1、均布荷载、
9、均布荷载2、三角形荷载、三角形荷载3.3平面任意力系的平衡条件和平衡方程一、平衡条件和平衡方程一、平衡条件和平衡方程 1、平衡条件:、平衡条件:平面任意力系平衡的必要与平面任意力系平衡的必要与充分条件是:力系的主矢和对任一点的主矩都充分条件是:力系的主矢和对任一点的主矩都等于零。即等于零。即 2、平衡方程:由于、平衡方程:由于,因此平衡条件的解析方程为:,因此平衡条件的解析方程为:即:即:平面任意力系平衡的解析条件是:力系中所平面任意力系平衡的解析条件是:力系中所有各力在其作用面内两个任选的坐标轴上投影的有各力在其作用面内两个任选的坐标轴上投影的代数和分别等于零,所有各力对任一点之矩的代代数和
10、分别等于零,所有各力对任一点之矩的代数和等于零数和等于零。上式称为。上式称为平面任意力系的平衡方程平面任意力系的平衡方程。3.3平面任意力系的平衡条件和平衡方程例例1求图示刚架的约束反力。解:以刚架为研究对象,受力如图,建立如图所示的坐标。解之得:3.3平面任意力系的平衡条件和平衡方程例例2求图示梁的支座反力。解:以梁为研究对象,受力如图,建立如图所示的坐标。3.3平面任意力系的平衡条件和平衡方程例例3求图示平面刚架的约束反力。解:以刚架为研究对象,受力如图,建立如图所示的坐标。解之得:3.3平面任意力系的平衡条件和平衡方程例例4 梁ABC用三链杆支承,并受荷载 和 的作用,如图所示,试求每根
11、链杆所受的力。解1:以梁为研究对象,受力如图,建立如图坐标。解之得:3.3平面任意力系的平衡条件和平衡方程例例4 解2:以梁为研究对象,受力如图,建立如图坐标。解之可得同上的结果。同样,亦可由 或 和前两个投影方程联立求解。3.3平面任意力系的平衡条件和平衡方程二、平衡方程的其它形式二、平衡方程的其它形式1、二矩式、二矩式其中其中A、B两点的连线两点的连线AB不能垂直于不能垂直于x轴。轴。2、三矩式、三矩式其中其中A、B、C三点不能在同一条直线上。三点不能在同一条直线上。3.3平面任意力系的平衡条件和平衡方程例例5 解:以杆AB为研究对象,受力如图。解之得:均质杆AB长l,重为G,置于光滑半圆
12、槽内,圆槽半径为r,力 铅垂向下作用于D点,如图,求平衡时杆与水平线的夹角 。3.4平 面 平 行 力 系一、平面平行力系的平衡方程一、平面平行力系的平衡方程 力的作用线在同一平面且相互平行的力系称力的作用线在同一平面且相互平行的力系称平面平行力系平面平行力系。平面平行力系作为平面任意力平面平行力系作为平面任意力系的特殊情况,当它平衡时,也应系的特殊情况,当它平衡时,也应满足平面任意力系的平衡方程,选满足平面任意力系的平衡方程,选如图的坐标,则如图的坐标,则 自然满足。自然满足。于是平面平行力系的平衡方程为:于是平面平行力系的平衡方程为:平面平行力系的平衡方程也可表示为二矩式:平面平行力系的平
13、衡方程也可表示为二矩式:其中其中AB连线不能与各力的作用线平行。连线不能与各力的作用线平行。3.5物 体 系 统 的 平 衡一、概念一、概念 由若干个物体通过约束所组成的系统称为由若干个物体通过约束所组成的系统称为物体系统物体系统,简称,简称物系物系。外界物体作用于系统的力称该系统的外界物体作用于系统的力称该系统的外力外力。系统内各物体间相互作用的力称该系统的系统内各物体间相互作用的力称该系统的内力内力。当整个系统平衡时,系统内每个物体都平当整个系统平衡时,系统内每个物体都平衡。反之,系统中每个物体都平衡,则系统必衡。反之,系统中每个物体都平衡,则系统必然平衡。因此,然平衡。因此,当研究物体系
14、统的平衡时,研当研究物体系统的平衡时,研究对象可以是整体,也可以是局部,也可以是究对象可以是整体,也可以是局部,也可以是单个物体。单个物体。3.5物 体 系 统 的 平 衡一、静定和静不定的概念一、静定和静不定的概念 在静力学中求解物体系统的平衡问题在静力学中求解物体系统的平衡问题时,若未知量的数目不超过独立平衡方程时,若未知量的数目不超过独立平衡方程数目,则由刚体静力学理论,可把全部未数目,则由刚体静力学理论,可把全部未知量求出,这类问题称为知量求出,这类问题称为静定问题静定问题。若未。若未知量的数目多于独立平衡方程数目,则全知量的数目多于独立平衡方程数目,则全部未知量用刚体静力学理论无法求
15、出,这部未知量用刚体静力学理论无法求出,这类问题称为类问题称为静不定问题静不定问题或或超静定问题超静定问题。而。而总未知量数与总独立平衡方程数之差称为总未知量数与总独立平衡方程数之差称为静不定次数静不定次数。4.5物 体 系 统 的 平 衡3.5一、静定和静不定的概念一、静定和静不定的概念4.5物 体 系 统 的 平 衡3.5物 体 系 统 的 平 衡一、静定和静不定的概念一、静定和静不定的概念q练习:指明图中物体系统有 个独立平衡方程,有 个未知反力。3.5物 体 系 统 的 平 衡例例6 组合结构的荷载和尺寸如图所示,求支座反力和各链杆的内力。解:先以整体为研究对象,受力如图,建立如图坐标
16、。解之得:由于 ,代入解之得:3.5物 体 系 统 的 平 衡例例6 再以铰C为研究对象,受力如图,建立如图坐标。当然,亦可以以AB为研究对象,求 和 。3.5物 体 系 统 的 平 衡例例7 求图示三铰刚架的支座反力。解:先以整体为研究对象,受力如图,建立如图坐标。可解得:再以AC为研究对象,受力如图。解得:3.5物 体 系 统 的 平 衡例例8 求图示多跨静定梁的支座反力。解:先以CD为研究对象,受力如图。解之得:再以整体为研究对象,受力如图,建立如图坐标。解之得:3.5物 体 系 统 的 平 衡例例9 求图示结构固定端的约束反力。解:先以BC为研究对象,受力如图。于是得:再以AB为研究对
17、象,受力如图,建立如图坐标。将 代入即可求得 、。3.5物 体 系 统 的 平 衡练习:练习:BAa2a2a2aC 图示结构中,各杆自重不计。求固定端A的约束反力(B为中间铰,C为可动铰支座)。3.5物 体 系 统 的 平 衡例例10 结构的荷载和尺寸如图,CE=ED,试求固定端A和铰支座B的约束反力。解:先以BD为研究对象,受力如图。解得:再以CDB局部为研究对象,受力如图。解得:3.5物 体 系 统 的 平 衡例例10 最后以整体为研究对象,受力如图,建立如图坐标。解之得:3.5物 体 系 统 的 平 衡例例11 图示结构,各杆在A、E、F、G处均为铰接,B处为光滑接触。在C、D两处分别作
18、用力 和 ,且 ,各杆自重不计,求F处的约束反力。解:先以整体为研究对象,受力如图。解得:3.5物 体 系 统 的 平 衡例例11再以DF为研究对象,受力如图。解得:最后以杆BG为研究对象,受力如图。解得:3.5物 体 系 统 的 平 衡思考题思考题 图示结构,在水平杆AB上作用一铅垂向下的力 ,试证明AC杆所受的力与 的作用位置无关。3.6桁 架 的 内 力 计 算概概 念念 桁架是由杆件彼此在两端用铰链联接形成的几何桁架是由杆件彼此在两端用铰链联接形成的几何形状不变的结构。形状不变的结构。桁架中所有杆件都在同一平面内桁架中所有杆件都在同一平面内的桁架称为的桁架称为平面桁架平面桁架。桁架中的
19、铰链接头称为。桁架中的铰链接头称为节点节点。为了简化桁架的计算,工程实际中采用以下几为了简化桁架的计算,工程实际中采用以下几个假设:个假设:(1)桁架的杆件都是直杆;)桁架的杆件都是直杆;(2)杆件用光滑铰链联接;)杆件用光滑铰链联接;(3)桁架所受的力都作用到节点上,且在桁架)桁架所受的力都作用到节点上,且在桁架平面内;平面内;(4)桁架杆件重不计,或平均分配在杆件两端)桁架杆件重不计,或平均分配在杆件两端的节点上。的节点上。这样的桁架,称为这样的桁架,称为理想桁架理想桁架。3.6桁 架 的 内 力 计 算一、节点法一、节点法 桁架内每个节点都受平面汇交力系作用,为求桁架内每个节点都受平面汇
20、交力系作用,为求桁架内每个杆件的内力,逐个取桁架内每个节点为桁架内每个杆件的内力,逐个取桁架内每个节点为研究对象,求桁架杆件内力的方法即为研究对象,求桁架杆件内力的方法即为节点法节点法。例14 平面桁架的尺寸和支座如图,在节点D处受一集中荷载P=10kN的作用。试求桁架各杆件所受的内力。解:先以整体为研究对象,受力如图,建立如图坐标。解之得:3.6桁 架 的 内 力 计 算一、节点法一、节点法 再分别以节点A、C、D为研究对象,受力如图,建立如图坐标。对A:解得:对C:解得:对D:解得:3.6桁 架 的 内 力 计 算二、截面法二、截面法 用假想的截面将桁架截开,取至少包含两个用假想的截面将桁架截开,取至少包含两个节点以上部分为研究对象,考虑其平衡,求出被节点以上部分为研究对象,考虑其平衡,求出被截杆件内力,这就是截杆件内力,这就是截面法截面法。解:以整体为研究对象,受力如图,建立如图坐标。例15 图示平面桁架,各杆长度均为1m,在节点E上作用荷载 ,在节点D上作用荷载 ,试求杆1、2、3的内力。3.6桁 架 的 内 力 计 算二、截面法二、截面法解之得:为求1、2、3杆的内力,用假想截面m-n将桁架截开。解之得:取左半部分为研究对象,受力如图,建立如图坐标。3.6桁 架 的 内 力 计 算二、截面法二、截面法 思考题:求下列各桁架指定杆件的轴力。15.6动力学普遍定理综合应用