《人教版九年级数学上册教案:23.1-图形的旋转(2)公开课教案教学设计课件.doc》由会员分享,可在线阅读,更多相关《人教版九年级数学上册教案:23.1-图形的旋转(2)公开课教案教学设计课件.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、23.1 图形的旋转(2) 第二课时 教学内容 1对应点到旋转中心的距离相等 2对应点与旋转中心所连线段的夹角等于旋转角 3旋转前后的图形全等及其它们的运用 教学目标 理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等掌握以上三个图形的旋转的基本性质的运用 先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质 重难点、关键 1重点:图形的旋转的基本性质及其应用 2难点与关键:运用操作实验几何得出图形的旋转的三条基本性质 教学过程 一、复习引入 (学生活动)老师口问,学生口答 1什么叫旋转?什么叫旋转中
2、心?什么叫旋转角? 2什么叫旋转的对应点? 3请独立完成下面的题目如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形? (老师点评)分析:能看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60、120、180、240、300形成的 二、探索新知 上面的解题过程中,能否得出什么结论,请回答下面的问题: 1A、B、C、D、E、F到O点的距离是否相等? 2对应点与旋转中心所连线段的夹角BOC、COD、DOE、EOF、FOA是否相等? 3旋转前、后的图形这里指三角形OAB、OBC、OCD、ODE、OEF、OFA全等吗? 老师点评:(1)距离相等,
3、(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板(分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1线段OA与OA,OB与OB,OC与OC有什么关系? 2AOA,BOB,COC有什么关系? 3ABC与ABC形状和大小有什么关系? 老师点评:1OA=OA,OB=OB,OC=OC,也就是对应点到旋转中心相等 2AOA=BOB=COC
4、,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角 3ABC和ABC形状相同和大小相等,即全等 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等例1如图,ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形分析:绕C点旋转,A点的对应点是D点,那么旋转角就是ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCB=ACD,又由对应点到旋转中心的距离相等,即CB=CB,就可确定B的位置,如图所示 解:(1)连结CD (2)以CB为一边作
5、BCE,使得BCE=ACD (3)在射线CE上截取CB=CB 则B即为所求的B的对应点 (4)连结DB 则DBC就是ABC绕C点旋转后的图形 例2如图,四边形ABCD是边长为1的正方形,且DE=,ABF是ADE的旋转图形 (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少?(4)如果连结EF,那么AEF是怎样的三角形? 分析:由ABF是ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到ABF与ADE是完全重合的,所以它是直角三角形 解:(1)旋转中心是A点 (2)ABF是由ADE旋转而成的 B是D
6、的对应点 DAB=90就是旋转角 (3)AD=1,DE= AE= 对应点到旋转中心的距离相等且F是E的对应点 AF= (4)EAF=90(与旋转角相等)且AF=AE EAF是等腰直角三角形 三、巩固练习 教材P64 练习1、2 四、应用拓展例3如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明 解:四边形ABCD、四边形AKLM是正方形 AB=AD,AK=AM,且BAD=KAM为旋转角且为90 ADM是以A为旋转中心,BAD为旋转角由AB
7、K旋转而成的 BK=DM 五、归纳小结(学生总结,老师点评) 本节课应掌握: 1对应点到旋转中心的距离相等; 2对应点与旋转中心所连线段的夹角等于旋转角; 3旋转前、后的图形全等及其它们的应用 六、布置作业 1教材 复习巩固4 综合运用5、62作业设计作业设计一、选择题1ABC绕着A点旋转后得到ABC,若BAC=130,BAC=80,则旋转角等于( ) A50 B210 C50或210 D1302在图形旋转中,下列说法错误的是( ) A在图形上的每一点到旋转中心的距离相等 B图形上每一点移动的角度相同 C图形上可能存在不动的点 D图形上任意两点的连线与其对应两点的连线长度相等3如图,下面的四个
8、图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1在作旋转图形中,各对应点与旋转中心的距离_2如图,ABC和ADE均是顶角为42的等腰三角形,BC、DE分别是底边,图中的ABD绕A旋转42后得到的图形是_,它们之间的关系是_,其中BD=_3如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,EAF=45,在保持EAF=45的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是_三、综合提高题1如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90,这四个部分之间有何关
9、系?2如图,以ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AGEB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则OAF与OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1C 2A 3D二、1相等 2ACE 图形全等 CE 3相等三、1这四个部分是全等图形2A+B+C=180, 绕AB、AC的中点旋转180,可以得到一个半圆, 面积之和=3重合:证明:EGAF 2+3=90 3+1+90=180 1+3=90 1=2 同理E=F,四边形ABCD是正方形,AB=B
10、C ABFBCE,BF=CE,OE=OF,OA=OB OBE绕O点旋转90便可和OAF重合CD上移动时,BE+DF与EF的关系是_三、综合提高题1如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90,这四个部分之间有何关系?2如图,以ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AGEB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则OAF与OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1C 2A 3D二、1相等 2ACE 图形全等 CE 3相等三、1这四个部分是全等图形2A+B+C=180, 绕AB、AC的中点旋转180,可以得到一个半圆, 面积之和=3重合:证明:EGAF 2+3=90 3+1+90=180 1+3=90 1=2 同理E=F,四边形ABCD是正方形,AB=BC ABFBCE,BF=CE,OE=OF,OA=OB OBE绕O点旋转90便可和OAF重合7