《《高考试卷模拟练习》韶关市2009届高三第一次调研考试数学试题(文科)新模拟.doc》由会员分享,可在线阅读,更多相关《《高考试卷模拟练习》韶关市2009届高三第一次调研考试数学试题(文科)新模拟.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、广东省韶关2009届高三第一次调研考试数学试题(文科)本卷分选择题和非选择题两部分,满分150分.考试用时间120分钟.注意事项:1 考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;2 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。答在试题卷上不得分;3 考试结束,考生只需将答题案交回。参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高如果事件、互斥,那么第一部分 选择题(共40分)一、选择题(本大题共10小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知集合,则=A BCD2. 复数的共轭复数为 A.iB.
2、C.12iD.1+2i3.右图是2008年韶关市举办“我看韶关改革开放三十年”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A.5;1.6B.85;1.6C.85;0.4D.5;0.44.如图, 共顶点的椭圆,与双曲线,的离心率分别为,其大小关系为 5.已知,若,则实数的值是 A. -17 B. C. D.6.已知两个不同的平面、和两条不重合的直线,m、n,有下列四个命题若,则若若若其中正确命题的个数是A0个B1个C2个D3个7.圆上的动点到直线的最小距离为 A1 B C D 8. 电流强度(安)随时间(秒)变化的函数的图象如右
3、图所示,则当秒时,电流强度是A安 B安C安 D安9.已知函数,若实数是方程的解,且,则的值为A恒为正值 B等于 C恒为负值 D不大于10. 已知函数其中.记函数满足的事件为A,则事件A的概率为A B C D第二部分 非选择题(共110分)二.填空题(每小题5分,共20分)11. 下面框图表示的程序所输出的结果是_ . (说明,是赋值语句,也可以写成 ,或)12. 在由正数组成的等比数列中,则_.13. 下列四个命题中;“且”是“”的充要条件; 函数的最小值为其中假命题的为_(将你认为是假命题的序号都填上).第13至15题,从3题中选答2题,多选按前2题记分14.在极坐标系中,圆心在且过极点的圆
4、的方程为_15.如图,从圆外一点引圆的切线和割线,已知,圆的半径为,则圆心到的距离为 三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤16.(本题满分12分)在中,为角所对的三边,已知()求角的值;()若,求的长.17.(本题满分12分)现从3道选择题和2道填空题中任选2题.()求选出的2题都是选择题的概率;()求选出的两题中至少1题是选择题的概率.18. (本题满分14分)一个棱柱的直观图和三视图(主视图和俯视图是边长为的正方形,左视图是直角边长为的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.()求证:()求三棱锥的体积;()当FG
5、=GD时,证明/平面FMC.19. (本题满分14分)已知动圆过定点,且与定直线相切.(I)求动圆圆心的轨迹C的方程;(II)若是轨迹C的动弦,且过, 分别以、为切点作轨迹C的切线,设两切线交点为Q,证明:.20. (本题满分14分)已知函数;()当时,判断在定义域上的单调性;()若在上的最小值为2,求的值;21. (本题满分14分)已知函数()证明:,并求().已知等差数列与的前项和分别为与,且.当时,比较与的大小;()在()条件下,已知,数列的公差为.探究在数列与中是否有相等的项,若有,求出这些相等项由小到大排列后得到的数列的通项公式;若没有,请说明理由.2008年韶关市高三模拟测试数学试
6、题(文科)答案及评分标准一、选择题答案 DDBCB DBAAA二、填空题 11. 360 , 12. 16 , 13. , 14. ,15.三、解答题16.(本题满分12分)解:() , .3分 6分()在中, , 8分由正弦定理知:10分=.12分17. (本题满分12分)解()记“选出两道都是选择题”为A,5题任选2题,共有种,其中,都是选择题有3种2分4分()记“选出1道选择题,1道填空题”为B, 10分所以,至少有1道选择题的概率 12分18. (本题满分14分)()由三视图可知,多面体是直三棱柱,两底面是直角边长为的等腰直角三角形,侧面, 是边长为的正方形。. 3分连结, 因为, 所
7、以,面 又,, 所以,面, 面 所以.6分(). 12分. 14分另解:()连结交于,连结因为分别是的中点,所以/,/,所以,/,是平行四边形9分,面,面所以,/平面FMC. 10分19.(本题满分14分)解:(I)依题意,圆心的轨迹是以为焦点,为准线的抛物线上2分 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是.5分(II) .6分, ,8分抛物线方程为所以过抛物线上A、B两点的切线斜率分别是, ,所以,20.(本题满分14分)解:()由题意:的定义域为,且,故在上是单调递增函数(4分) ()由(1)可知: 若,则,即在上恒成立,此时在上为增函数,(舍去)(6分) 若,则,即在上恒成立,此时在上为减函数,所以,(10分) 若,令得, 当时,在上为减函数, 当时,在上为增函数,(13分)综上可知: (14分)21.(本题满分14分)解:()因为2分所以设S=(1)S=.(2)(1)+(2)得:=,所以S=30125分()因为所以.7分所以;所以当时,10分()在()条件下,当时所以所以12分假若存在数列中的第项与数列中的第项相等,即因为为奇数,6为偶数,所以不是整数,所以在数列与中没有相等的项. 14分