《二次函数、二次方程及二次不等式关系.pdf》由会员分享,可在线阅读,更多相关《二次函数、二次方程及二次不等式关系.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-.难点 4三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.难点磁场已知对于x的所有实数值,二次函数f(x)=x24ax+2a+12(aR R)的值都是非负的,求x=|a1|+2 的根的取值 X 围.a2案例探究例 1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=bx,其中a、b、c满足abc,a+b+c=0,(a,b,cR R).(1
2、)求证:两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值 X 围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于题目.知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合.错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.关于x的方程y ax2bxc(1)证明:由消去y得ax2+2bx+c=0y bxc3=4b24ac=4(ac)24ac=4(a2+ac+c2)=4(a+)2c224a+b+c=0,abc,a0,c
3、0,0,即两函数的图象交于不同的两点.42bc(2)解:设方程ax2+bx+c=0 的两根为x1和x2,则x1+x2=,x1x2=.aa|A1B1|2=(x1x2)2=(x1+x2)24x1x22b24c4b24ac4(a c)24ac()2aaaa2c2cc123 4()1 4()aaa24abc,a+b+c=0,a0,cacc,解得f()4()2c1(2,)a2ccc11的对称轴方程是.aaa2c1(2,)时,为减函数a2ca|A1B1|2(3,12),故|A1B1|(3,2 3).-.可修编.-.例 2已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(1
4、,0),另一根在区间(1,2),求m的 X 围.(2)若方程两根均在区间(0,1),求m的 X 围.命题意图:本题重点考查方程的根的分布问题,属级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f(x)=x2+2mx+2m+1 与x轴的交点分别在区间(1,0)和(1,2),画出示意图,得1m 2f(0)2m1 0,mR,f(1)2 0,1f(1)4m2 0,m 2,f(2)6m5 0m 5
5、651 m .62 f(0)0,f(1)0,(2)据抛物线与x轴交点落在区间(0,1),列不等式组 0,0 m 11m ,21m ,2m 12或m 12,1 m 0.(这里 0m0,f(x)在区间p,q上的最大值M,最小值m,令x0=1(p+q).2bp,则f(p)=m,f(q)=M;2abb若px0,则f()=m,f(q)=M;2a2a若-.可修编.-.若x0若bbq,则f(p)=M,f()=m;2a2abq,则f(p)=M,f(q)=m.2a2.二次方程f(x)=ax2+bx+c=0 的实根分布及条件.(1)方程f(x)=0 的两根中一根比r大,另一根比r小af(r)0;b24ac 0,b
6、(2)二次方程f(x)=0 的两根都大于r r,2aa f(r)0 b24ac 0,b q,p (3)二次方程f(x)=0 在区间(p,q)内有两根2aa f(q)0,a f(p)0;(4)二次方程f(x)=0 在区间(p,q)内只有一根f(p)f(q)0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立.a f(p)0(5)方程f(x)=0 两根的一根大于p,另一根小于q(pq).a f(q)03.二次不等式转化策略(1)二次不等式f(x)=ax2+bx+c0 的解集是:(,),+)a0 时,f()f()|+|+bbb|+|,当a0 时,f()2a2a2ab|;2a
7、b p,(3)当a0时,二 次 不 等 式f(x)0在 p,q 恒 成 立2a或f(p)0,bp q,b p;2a或2abf()0,f(q)0;2aa 0,a b 0,a 0,a b 0或f(x)0恒成立 或(4)f(x)0 恒成立 0,c 0;0,c 0.歼灭难点训练一、选择题1.()若不等式(a2)x2+2(a2)x40),若f(m)0,则实数p的取值 X 围是_.4.()二次函数f(x)的二次项系数为正,且对任意实数x恒有f(2+x)=f(2x),若f(12x2)0 且a1)a3apqr=0,其中m2m1mm0,求证:m(1)pf()0.答案:A二、3.解析:只需f(1)=2p23p+9
8、0 或f(1)=2p2+p+10 即3pp1.p(3,1,且f(1)0,则f(0)0,而f(m)0,m(0,1),231或223).23答案:(3,)24.解析:由f(2+x)=f(2x)知x=2 为对称轴,由于距对称轴较近的点的纵坐标较小,|12x22|1+2xx22|,2x0.答案:2x0ty得 logt3=logy3logaatt logt3a3alogay3由t=ax知x=logat,代入上式得x3=,xx三、5.解:(1)由 logalogay=x23x+3,即y=ax(2)令u=x23x+3=(x23x3(x0).323)+(x0),则y=au24若 0a1,要使y=au有最小值
9、8,33则u=(x)2+在(0,2上应有最大值,但u在(0,2上不存在最大值.2433若a1,要使y=au有最小值 8,则u=(x)2+,x(0,2应有最小值2433当x=时,umin=,ymin=a42434由a3=8 得a=16.所求a=16,x=3.26.解:f(0)=10(1)当m0 时,二次函数图象与x轴有两个交点且分别在y轴两侧,符合题意.-.可修编.-.0(2)当m0 时,则3m解得 0m1 0 m综上所述,m的取值 X 围是m|m1 且m0.7.证明:(1)pf(mm2m)pp()q()rm1m1m1 pmpmqrpmp pm22m1mm2(m1)(m1)m(m2)(m1)2(
10、m1)(m2)2 p2m pm21m,由于f(x)是二次函数,故p0,又m0,所以,pf()0.2m1(m1)(m2)(2)由题意,得f(0)=r,f(1)=p+q+r当p0 时,由(1)知f(若r0,则f(0)0,又f(m)0m1mm)0,所以f(x)=0 在(0,)内有解;m1m1prpr若r0,则f(1)=p+q+r=p+(m+1)=()+r=0,m2mm2mmm又f()0,所以f(x)=0 在(,1)内有解.m1m1当p0 时同理可证.8.解:(1)设该厂的月获利为y,依题意得y=(1602x)x(500+30 x)=2x2+130 x500由y1300 知2x2+130 x5001300 x265x+9000,(x20)(x45)0,解得 20 x45当月产量在 2045 件之间时,月获利不少于1300 元.652(2)由(1)知y=2x2+130 x500=2(x)+1612.52x为正整数,x=32 或 33 时,y取得最大值为 1612 元,当月产量为 32 件或 33 件时,可获得最大利润1612 元.-.可修编.