《第8章曲线和曲面优秀课件.ppt》由会员分享,可在线阅读,更多相关《第8章曲线和曲面优秀课件.ppt(103页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第8 8章章 曲线和曲面曲线和曲面第1页,本讲稿共103页提出问题提出问题由离散点来近似地决定曲线和曲面,即通过测量或实验得到一系列有序点列,根据这些点列需构造出一条光滑曲线,以直观地反映出实验特性、变化规律和趋势等。第2页,本讲稿共103页简介简介工业产品的几何形状:初等解析曲面复杂方式自由变化的曲线曲面模线样板法模线样板法计计算算机机辅辅助助几几何何设设计计CAGD(Computer Aided Geometric Design)第3页,本讲稿共103页8.1 曲线曲面基础曲线曲面基础8.1.1 曲线曲面数学描述的发展曲线曲面数学描述的发展弗格森双三次曲面片弗格森双三次曲面片孔斯双三次曲
2、面片孔斯双三次曲面片样条方法样条方法Bezier方法方法B样条方法样条方法有理有理Bezier非均匀有理非均匀有理B样条方法样条方法第4页,本讲稿共103页8.1.2 曲线曲面的表示要求曲线曲面的表示要求1.唯一性唯一性2.几何不变性几何不变性3.易于定界易于定界4.统一性统一性5.易于实现光滑连接易于实现光滑连接6.几何直观几何直观第5页,本讲稿共103页8.1.3 曲线曲面的表示曲线曲面的表示非参数表示参数表示显式表示隐式表示例如:y=mx+b 例如:例如:第6页,本讲稿共103页参数表示方法的优点:参数表示方法的优点:1点动成线2选取具有几几何何不不变变性性的参数曲线曲面表示形式。3斜率
3、曲线的参数表示形式:曲线的参数表示形式:第7页,本讲稿共103页4t0,1,使其相应的几何分量是有界的5可对参数方程直接进行仿射和投影变换6参数变化对各因变量的影响可以明显地表示出来第8页,本讲稿共103页8.1.4 插值和逼近样条插值和逼近样条采用模线样板法表示和传递自由曲线曲面的形状称为样条样条。样样条条曲曲线线是指由多项式曲线段连接而成的曲线,在每段的边界处满足特定的连续条件。样条曲面样条曲面则可以用两组正交样条曲线来描述。第9页,本讲稿共103页曲曲线线曲曲面面的的拟拟合合:当用一组型值点来指定曲线曲面的形状时,形状完全通过给定的型值点列。第10页,本讲稿共103页曲曲线线曲曲面面的的
4、逼逼近近:当用一组控制点来指定曲线曲面的形状时,求出的形状不必通过控制点列逼近逼近:构造一条曲线,使它在某种意义上最佳逼近这些型值点,称之为对这些型值点进行逼近(approximation)。第11页,本讲稿共103页求给定型值点之间曲线上的点称为曲线的插值曲线的插值。将连接有一定次序控制点的直线序列称为控控制制多多边边形形或特征多边形特征多边形第12页,本讲稿共103页8.1.5 连续性条件连续性条件假定参数曲线段pi以参数形式进行描述:参数连续性几何连续性第13页,本讲稿共103页1.参数连续性参数连续性0阶阶参参数数连连续续性性,记作C0连续性,是指曲线的几何位置连接,即第14页,本讲稿
5、共103页1阶参数连续性阶参数连续性记记作作C1连连续续性性,指指代代表表两两个个相相邻邻曲曲线线段段的的方方程程在在相相交交点处有相同的一阶导数:点处有相同的一阶导数:第15页,本讲稿共103页2阶参数连续性阶参数连续性,记作C2连续性,指两个相邻曲线段的方程在相交点处具有相同的一阶和二阶导数。第16页,本讲稿共103页2.几何连续性几何连续性0阶阶几几何何连连续续性性,记作G0连续性,与0阶参数连续性的定义相同,满足:第17页,本讲稿共103页1阶阶几几何何连连续续性性,记作G1连续性,指一阶导数在相邻段的交点处成比例2阶阶几几何何连连续续性性,记作G2连续性,指相邻曲线段在交点处其一阶和
6、二阶导数均成比例。第18页,本讲稿共103页8.1.6 样条描述样条描述n次样条参数多项式曲线的矩阵:第19页,本讲稿共103页基矩阵基矩阵几何约束条件几何约束条件基函数基函数(blenging function),或称混合函数混合函数。第20页,本讲稿共103页8.2 三次样条三次样条给定n+1个点,可得到通过每个点的分段三次多项式曲线:第21页,本讲稿共103页8.2.1 自然三次样条自然三次样条定定义义:给定n+1个型值点,现通过这些点列构造一条自然三次参数样条曲线,要求在所有曲线段的公共连接处均具有位置、一阶和二阶导数的连续性,即自自然然三三次次样样条条具有具有C2连续性连续性。还需要
7、两个附加条件才能解出方程组第22页,本讲稿共103页特点特点:1.只适用于型值点分布比较均匀的场合2.不能“局部控制”第23页,本讲稿共103页8.2.2 三次三次Hermite样条样条定定义义:假定型值点Pk和Pk+1之间的曲线段为p(t),t0,1,给定矢量Pk、Pk+1、Rk和Rk+1,则满足下列条件的三次参数曲线为三次三次Hermite样条曲线样条曲线:第24页,本讲稿共103页推导推导:第25页,本讲稿共103页Mh是是Hermite矩阵矩阵。Gh是是Hermite几何矢量几何矢量。第26页,本讲稿共103页三次三次Hermite样条曲线的方程为样条曲线的方程为:第27页,本讲稿共1
8、03页通常将TMk称为Hermite基基函函数数(或或称称混混合合函函数数,调调和和函数函数):第28页,本讲稿共103页第29页,本讲稿共103页特点分析特点分析:1.可以局部调整,因为每个曲线段仅依赖于端点约束。2.基于Hermite样条的变化形式:Cardinal样条和Kochanek-Bartels样条3.Hermite曲线具有几何不变性第30页,本讲稿共103页8.3 Bezier曲线曲面曲线曲面8.3.1 Bezier曲线的定义曲线的定义第31页,本讲稿共103页定义定义:Bernstein基函数基函数具有如下形式:注意:当k=0,t=0时,tk=1,k!=1。第32页,本讲稿共1
9、03页1一次一次Bezier曲线曲线(n=1)第33页,本讲稿共103页2二次二次Bezier曲线曲线(n=2)第34页,本讲稿共103页3三次三次Bezier曲线曲线(n=3)第35页,本讲稿共103页第36页,本讲稿共103页第37页,本讲稿共103页8.3.2 Bezier曲线的性质曲线的性质1端点端点第38页,本讲稿共103页2一阶导数一阶导数第39页,本讲稿共103页第40页,本讲稿共103页三次Bezier曲线段在起始点和终止点处的一阶导数为:第41页,本讲稿共103页3二阶导数二阶导数 三次Bezier曲线段在起始点和终止点处的二阶导数为:第42页,本讲稿共103页4对称性对称性
10、5凸包性凸包性6几何不变性几何不变性7变差减少性变差减少性8控制顶点变化对曲线形状的影响控制顶点变化对曲线形状的影响第43页,本讲稿共103页8.3.3 Bezier曲线的生成曲线的生成1绘图一段绘图一段Bezier曲线曲线第44页,本讲稿共103页2Bezier曲线的拼接曲线的拼接问题的提出问题的提出:如何保证连接处具有G1和G2连续性。在两段三次Bezier曲线间得到G1连续性为实现G1连续,则有:亦即:第45页,本讲稿共103页在两段三次Bezier曲线间得到G2连续性:第46页,本讲稿共103页8.3.4 Bezier曲面曲面1Bezier曲面曲面定义定义:BENi,m(u)与BENj
11、,n(v)是Bernstein基函数基函数:第47页,本讲稿共103页第48页,本讲稿共103页1双线性双线性Bezier曲面曲面(m=n=1)第49页,本讲稿共103页2双二次双二次Bezier曲面曲面(m=n=2)第50页,本讲稿共103页3双三次双三次Bezier曲面曲面(m=n=3)第51页,本讲稿共103页第52页,本讲稿共103页其中第53页,本讲稿共103页性质性质:1控制网格的四个角点正好是Bezier曲面的四个角点,2控制网格最外一圈顶点定义Bezier曲面的四条边界,这四条边界均为Bezier曲线。第54页,本讲稿共103页3几何不变性4移动一个顶点Pi,j,将对曲面上参数
12、为u=i/m,v=j/n的那点 p(i/m,j/n)处发生最大的影响5对称性6凸包性第55页,本讲稿共103页2Bezier曲面的拼接曲面的拼接0阶连续性只要求相连接的曲面片具有公共的边界曲线。1阶连续性则要求在边界曲线上的任何一点,两个曲面片跨越边界的切线矢量应该共线,而且两切线矢量的长度之比为常数。第56页,本讲稿共103页第57页,本讲稿共103页实现实现G1连续性的条件为连续性的条件为:(1)p1(1,v)=p2(0,v),即有P3,i=Q0,i,i=0,1,2,3(2)P3,i-P2,i=(Q1,i-Q0,i),i=0,1,2,3已知两张双三次Bezier曲面片:第58页,本讲稿共1
13、03页8.4 B样条曲线曲面样条曲线曲面Bezier曲线的不足:一是控制多边形的顶点个数决定了Bezier曲线的阶次二是不能作局部修改第59页,本讲稿共103页8.4.1 B样条曲线的定义样条曲线的定义定义定义:de Boor点、点、B样条控制多边形、样条控制多边形、B样条基函数样条基函数 第60页,本讲稿共103页参数说明参数说明m是曲线的阶数,(m-1)为B样条曲线的次数,曲线在连接点处具有(m-2)阶连续。第61页,本讲稿共103页节节点点矢矢量量:节点矢量分为三种类型:均匀的,开放均匀的和非均匀的。当节点沿参数轴均匀等距分布,即tk+1-tk=常数时,表示均匀均匀B样条函数样条函数。当
14、节点沿参数轴的分布不等距,即(tk+1-tk)常数时,表示非均匀非均匀B样条函数样条函数。第62页,本讲稿共103页1均匀周期性均匀周期性B样条曲线样条曲线T=(-2,-1.5,-1,-0.5,0,0.5,1,1.5,2)T=(0,1,2,3,4,5,6,7)均匀B样条的基函数呈周期性:第63页,本讲稿共103页均匀二次(三阶)均匀二次(三阶)B样条曲线样条曲线取n=3,m=3,则 n+m=6,不 妨 设 节 点 矢 量 为:T=(0,1,2,3,4,5,6):第64页,本讲稿共103页第65页,本讲稿共103页第66页,本讲稿共103页第67页,本讲稿共103页第68页,本讲稿共103页曲线
15、的起点和终点值:均匀二次B样条曲线起点和终点处的导数:第69页,本讲稿共103页结论结论:对于由任意数目的控制点构造的二次周期性B样条曲线来说,曲线的起始点位于头两个控制点之间,终止点位于最后两个控制点之间。对于高次多项式,起点和终点是m-1个控制点的加权平均值点。若某一控制点出现多次,样条曲线会更加接近该点。第70页,本讲稿共103页三次(四阶)周期性三次(四阶)周期性B样条样条取m=4,n=3,节点矢量为:T=(0,1,2,3,4,5,6,7):第71页,本讲稿共103页第72页,本讲稿共103页第73页,本讲稿共103页三次周期性B样条的边界条件为:第74页,本讲稿共103页2开放均匀开
16、放均匀B样条曲线样条曲线节点矢量可以这样定义:令L=n-m,从0开始,按titi+1排列。第75页,本讲稿共103页开放均匀的二次(三阶)开放均匀的二次(三阶)B样条曲线样条曲线假设m=3,n=4,节点矢量为:T=(t0,t1,tn+m)=(t0,t1,t2,t3,t4,t5,t6,t7)=(0,0,0,1,2,3,3,3)。第76页,本讲稿共103页第77页,本讲稿共103页第78页,本讲稿共103页3非均匀非均匀B样条曲线样条曲线 第79页,本讲稿共103页4反求反求B样条曲线控制点及其端点性质样条曲线控制点及其端点性质问问题题:所谓反求B样条曲线控制点是指已知一组空间型值点Qi(i=1,
17、2,n),要找一条m次B样条曲线过Qi点,也即找一组与点列Qi对应的B样条控制顶点Pj(j=0,1,n+1)。第80页,本讲稿共103页用分段三次B样条曲线pi来拟合,其上型值点和控制点的位置矢量之间有关系:假定需求首末两点过Q1和Qn的非周期三次B样条曲线,则有P1=Q1,Pn=Qn,于是求解控制点Pj(i=2,3,.,n-1)的线性方程组为:第81页,本讲稿共103页补充两个边界条件为:P0=P-1=Q1 Pn+1=Pn+2=Qn第82页,本讲稿共103页8.4.2 B样条曲线的性质样条曲线的性质1局部支柱性局部支柱性B样条的基函数是一个分段函数,其重要特征是在参数变化范围内,每个基函数在
18、tk到tk+m的子区间内函数值不为零,在其余区间内均为零,通常也将该特征称为局部支柱性局部支柱性。第83页,本讲稿共103页第84页,本讲稿共103页2B样条的凸组合性质样条的凸组合性质B样条的凸组合性和B样条基函数的数值均大于或等于0保证了B样条曲线的凸包性,即B样条曲线必处在控制多边形所形成的凸包之内。第85页,本讲稿共103页第86页,本讲稿共103页3连续性连续性若一节点矢量中节点均不相同,则m阶(m-1次)B样条曲线在节点处为m-2阶连续。B样条曲线基函数的次数与控制顶点个数无关。重节点重节点问题第87页,本讲稿共103页4导数导数5几何不变性几何不变性6变差减少性变差减少性第88页
19、,本讲稿共103页8.4.3 B样条曲面样条曲面定义定义:控制顶点控制顶点、控制网格控制网格(特征网格)、B样条基函数样条基函数。B样条曲面具有与B样条曲线相同的局部支柱性、凸包性、连续性、几何变换不变性等性质。第89页,本讲稿共103页双三次双三次B样条曲面样条曲面第90页,本讲稿共103页8.5 有理样条曲线曲面有理样条曲线曲面NURBS方法:非均匀有理B样条(Nonuniform Rational B-Spline)方法8.5.1 NURBS曲线曲面的定义曲线曲面的定义定义定义:第91页,本讲稿共103页例例:假定用定义在三个控制顶点和开放均匀的节点矢量上的 二 次(三 阶)B样 条 函
20、 数 来 拟 合,于 是,T=(0,0,0,1,1,1),取权函数为:第92页,本讲稿共103页则有理B样条的表达式为:第93页,本讲稿共103页然后取不同的r值得到各种二次曲线:第94页,本讲稿共103页第95页,本讲稿共103页NURBS曲面曲面可由下面的有理参数多项式函数表示:第96页,本讲稿共103页8.5.2 有理基函数的性质有理基函数的性质NURBS曲线也可用有理基函数的形式表示:第97页,本讲稿共103页1普遍性普遍性2局部性局部性3凸包性凸包性4可微性可微性5权因子权因子8.5.3 NURBS曲线曲面的特点曲线曲面的特点 第98页,本讲稿共103页8.6 曲线曲面的转换和计算曲线曲面的转换和计算8.6.1 样条曲线曲面的转换样条曲线曲面的转换第99页,本讲稿共103页例:第100页,本讲稿共103页三次Hermite样条矩阵:三次Bezier样条矩阵:三次均匀B样条矩阵:第101页,本讲稿共103页8.6.2 样条曲线曲面的离散生成样条曲线曲面的离散生成1Horner规则2向前差分计算3细分第102页,本讲稿共103页The End!The End!第103页,本讲稿共103页