【教学课件】第8章曲线和曲面.ppt

上传人:wuy****n92 文档编号:69865589 上传时间:2023-01-10 格式:PPT 页数:101 大小:954KB
返回 下载 相关 举报
【教学课件】第8章曲线和曲面.ppt_第1页
第1页 / 共101页
【教学课件】第8章曲线和曲面.ppt_第2页
第2页 / 共101页
点击查看更多>>
资源描述

《【教学课件】第8章曲线和曲面.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第8章曲线和曲面.ppt(101页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第第8章章 曲线和曲面曲线和曲面提出问题提出问题由离散点来近似地决定曲线和曲面,即通过测量或实验得到一系列有序点列,根据这些点列需构造出一条光滑曲线,以直观地反映出实验特性、变化规律和趋势等。2023/1/91第第8章章 曲线和曲面曲线和曲面工业产品的几何形状:初等解析曲面复杂方式自由变化的曲线曲面模线样板法模线样板法计计算算机机辅辅助助几几何何设设计计CAGD(Computer AidedGeometricDesign)2023/1/928.1 曲线曲面基础曲线曲面基础8.1.1 曲线曲面数学描述的发展曲线曲面数学描述的发展弗格森双三次曲面片弗格森双三次曲面片孔斯双三次曲面片孔斯双三次曲面片

2、样条方法样条方法Bezier方法方法B样条方法样条方法有理有理Bezier非均匀有理非均匀有理B样条方法样条方法2023/1/938.1.2 曲线曲面的表示要求曲线曲面的表示要求1.唯一性2.几何不变性3.易于定界4.统一性5.易于实现光滑连接6.几何直观2023/1/948.1.3 曲线曲面的表示曲线曲面的表示参数表示方法的优点:1点动成线2选取具有几何不变性几何不变性的参数曲线曲面表示形式。3斜率2023/1/954t0,1,使其相应的几何分量是有界的5可对参数方程直接进行仿射和投影变换6参数变化对各因变量的影响可以明显地表示出来2023/1/968.1.4 插值和逼近样条插值和逼近样条采

3、用模线样板法表示和传递自由曲线曲面的形状称为样条样条。样样条条曲曲线线是指由多项式曲线段连接而成的曲线,在每段的边界处满足特定的连续条件。样条曲面样条曲面则可以用两组正交样条曲线来描述。2023/1/97曲曲线线曲曲面面的的拟拟合合:当用一组型值点来指定曲线曲面的形状时,形状完全通过给定的型值点列。2023/1/98曲曲线线曲曲面面的的逼逼近近:当用一组控制点来指定曲线曲面的形状时,求出的形状不必通过控制点列2023/1/99求给定型值点之间曲线上的点称为曲线的插值曲线的插值。将连接有一定次序控制点的直线序列称为控控制制多边形多边形或特征多边形特征多边形2023/1/9108.1.5 连续性条

4、件连续性条件假定参数曲线段pi以参数形式进行描述:参数连续性几何连续性2023/1/9111.参数连续性参数连续性0阶阶参参数数连连续续性性,记作C0连续性,是指曲线的几何位置连接,即2023/1/9121阶参数连续性阶参数连续性记作C1连续性,指代表两个相邻曲线段的方程在相交点处有相同的一阶导数:2023/1/9132阶参数连续性阶参数连续性,记作C2连续性,指两个相邻曲线段的方程在相交点处具有相同的一阶和二阶导数。2023/1/9142.几何连续性几何连续性0阶阶几几何何连连续续性性,记作G0连续性,与0阶参数连续性的定义相同,满足:1阶阶几几何何连连续续性性,记作G1连续性,指一阶导数在

5、相邻段的交点处成比例2阶阶几几何何连连续续性性,记作G2连续性,指相邻曲线段在交点处其一阶和二阶导数均成比例。2023/1/9158.1.6 样条描述样条描述n次样条参数多项式曲线的矩阵:2023/1/916基矩阵基矩阵几何约束条件几何约束条件基函数基函数(blenging function),或称混合函数混合函数。2023/1/9178.2 三次样条三次样条给定n+1个点,可得到通过每个点的分段三次多项式曲线:2023/1/9188.2.1 自然三次样条自然三次样条定定义义:给定n+1个型值点,现通过这些点列构造一条自然三次参数样条曲线,要求在所有曲线段的公共连接处均具有位置、一阶和二阶导数

6、的连续性,即自然三次样条具有自然三次样条具有C2连续性连续性。还需要两个附加条件才能解出方程组2023/1/919特点特点:1.只适用于型值点分布比较均匀的场合2.不能“局部控制”2023/1/9208.2.2 三次三次Hermite样条样条定定义义:假定型值点Pk和Pk+1之间的曲线段为p(t),t0,1,给定矢量Pk、Pk+1、Rk和Rk+1,则满足下列条件的三次参数曲线为三次三次Hermite样条曲线样条曲线:2023/1/921推导推导:2023/1/922Mh是是Hermite矩阵矩阵。Gh是是Hermite几何矢量几何矢量。2023/1/923三次三次Hermite样条曲线的方程为

7、样条曲线的方程为:2023/1/924通常将TMk称为Hermite基基函函数数(或或称称混混合合函函数数,调和函数调和函数):2023/1/9252023/1/926特点分析特点分析:1.可以局部调整,因为每个曲线段仅依赖于端点约束。2.基于Hermite样条的变化形式:Cardinal样条和Kochanek-Bartels样条3.Hermite曲线具有几何不变性2023/1/9278.3 Bezier曲线曲面曲线曲面8.3.1 Bezier曲线的定义曲线的定义2023/1/928定义定义:Bernstein基函数基函数具有如下形式:注意:当k=0,t=0时,tk=1,k!=1。2023/1

8、/9291一次一次Bezier曲线曲线(n=1)2023/1/9302二次二次Bezier曲线曲线(n=2)2023/1/9313三次三次Bezier曲线曲线(n=3)2023/1/9322023/1/9332023/1/9348.3.2 Bezier曲线的性质曲线的性质1端点端点2023/1/9352一阶导数一阶导数2023/1/9362023/1/937三次Bezier曲线段在起始点和终止点处的一阶导数为:2023/1/9383二阶导数二阶导数三次Bezier曲线段在起始点和终止点处的二阶导数为:2023/1/9394对称性对称性5凸包性凸包性6几何不变性几何不变性7变差减少性变差减少性8

9、控制顶点变化对曲线形状的影响控制顶点变化对曲线形状的影响2023/1/9408.3.3 Bezier曲线的生成曲线的生成1绘图一段绘图一段Bezier曲线曲线2023/1/9412Bezier曲线的拼接曲线的拼接问题的提出问题的提出:如何保证连接处具有G1和G2连续性。在两段三次Bezier曲线间得到G1连续性为实现G1连续,则有:亦即:2023/1/942在两段三次Bezier曲线间得到G2连续性:2023/1/9438.3.4 Bezier曲面曲面1Bezier曲面曲面定义定义:BENi,m(u)与BENj,n(v)是Bernstein基函数基函数:2023/1/9442023/1/945

10、1双线性双线性Bezier曲面曲面(m=n=1)2023/1/9462双二次双二次Bezier曲面曲面(m=n=2)2023/1/9473双三次双三次Bezier曲面曲面(m=n=3)2023/1/9482023/1/949其中2023/1/950性质性质:1控制网格的四个角点正好是Bezier曲面的四个角点,2控制网格最外一圈顶点定义Bezier曲面的四条边界,这四条边界均为Bezier曲线。2023/1/9513几何不变性4移动一个顶点Pi,j,将对曲面上参数为u=i/m,v=j/n的那点p(i/m,j/n)处发生最大的影响5对称性6凸包性2023/1/9522Bezier曲面的拼接曲面的

11、拼接0阶连续性只要求相连接的曲面片具有公共的边界曲线。1阶连续性则要求在边界曲线上的任何一点,两个曲面片跨越边界的切线矢量应该共线,而且两切线矢量的长度之比为常数。2023/1/9532023/1/954实现实现G1连续性的条件为连续性的条件为:(1)p1(1,v)=p2(0,v),即有P3,i=Q0,i,i=0,1,2,3(2)P3,i-P2,i=(Q1,i-Q0,i),i=0,1,2,3已知两张双三次Bezier曲面片:2023/1/9558.4 B样条曲线曲面样条曲线曲面Bezier曲线的不足:一是控制多边形的顶点个数决定了Bezier曲线的阶次二是不能作局部修改2023/1/9568.

12、4.1 B样条曲线的定义样条曲线的定义定义定义:de Boor点、点、B样条控制多边形、样条控制多边形、B样条基函数样条基函数 2023/1/957参数说明参数说明m是曲线的阶数,(m-1)为B样条曲线的次数,曲线在连接点处具有(m-2)阶连续。2023/1/958节节点点矢矢量量:节点矢量分为三种类型:均匀的,开放均匀的和非均匀的。当节点沿参数轴均匀等距分布,即tk+1-tk=常数时,表示均匀均匀B样条函数样条函数。当节点沿参数轴的分布不等距,即(tk+1-tk)常数时,表示非均匀非均匀B样条函数样条函数。2023/1/9591均匀周期性均匀周期性B样条曲线样条曲线T=(-2,-1.5,-1

13、,-0.5,0,0.5,1,1.5,2)T=(0,1,2,3,4,5,6,7)均匀B样条的基函数呈周期性:2023/1/960均匀二次(三阶)均匀二次(三阶)B样条曲线样条曲线取n=3,m=3,则n+m=6,不妨设节点矢量为:T=(0,1,2,3,4,5,6):2023/1/9612023/1/9622023/1/9632023/1/9642023/1/965曲线的起点和终点值:均匀二次B样条曲线起点和终点处的导数:2023/1/966结论结论:对于由任意数目的控制点构造的二次周期性B样条曲线来说,曲线的起始点位于头两个控制点之间,终止点位于最后两个控制点之间。对于高次多项式,起点和终点是m-

14、1个控制点的加权平均值点。若某一控制点出现多次,样条曲线会更加接近该点。2023/1/967三次(四阶)周期性三次(四阶)周期性B样条样条取m=4,n=3,节点矢量为:T=(0,1,2,3,4,5,6,7):2023/1/9682023/1/969三次周期性B样条的边界条件为:2023/1/9712开放均匀开放均匀B样条曲线样条曲线节点矢量可以这样定义:令L=n-m,从0开始,按titi+1排列。2023/1/972开放均匀的二次(三阶)开放均匀的二次(三阶)B样条曲线样条曲线假设m=3,n=4,节点矢量为:T=(t0,t1,tn+m)=(t0,t1,t2,t3,t4,t5,t6,t7)=(0

15、,0,0,1,2,3,3,3)。2023/1/9732023/1/9742023/1/9753非均匀非均匀B样条曲线样条曲线2023/1/9764反求反求B样条曲线控制点及其端点性质样条曲线控制点及其端点性质问问题题:所谓反求B样条曲线控制点是指已知一组空间型值点Qi(i=1,2,n),要找一条m次B样条曲线过Qi点,也即找一组与点列Qi对应的B样条控制顶点Pj(j=0,1,n+1)。2023/1/977用分段三次B样条曲线pi来拟合,其上型值点和控制点的位置矢量之间有关系:假定需求首末两点过Q1和Qn的非周期三次B样条曲线,则有P1=Q1,Pn=Qn,于是求解控制点Pj(i=2,3,.,n-

16、1)的线性方程组为:2023/1/978补充两个边界条件为:P0=P-1=Q1Pn+1=Pn+2=Qn2023/1/9798.4.2 B样条曲线的性质样条曲线的性质1局部支柱性局部支柱性B样条的基函数是一个分段函数,其重要特征是在参数变化范围内,每个基函数在tk到tk+m的子区间内函数值不为零,在其余区间内均为零,通常也将该特征称为局部支柱性局部支柱性。2023/1/9802023/1/9812B样条的凸组合性质样条的凸组合性质B样条的凸组合性和B样条基函数的数值均大于或等于0保证了B样条曲线的凸包性,即B样条曲线必处在控制多边形所形成的凸包之内。2023/1/9823连续性连续性若一节点矢量

17、中节点均不相同,则m阶(m-1次)B样条曲线在节点处为m-2阶连续。B样条曲线基函数的次数与控制顶点个数无关。重节点重节点问题2023/1/9844导数导数5几何不变性几何不变性6变差减少性变差减少性2023/1/9858.4.3 B样条曲面样条曲面定义定义:控制顶点控制顶点、控制网格控制网格(特征网格)、B样条基函数样条基函数。B样条曲面具有与B样条曲线相同的局部支柱性、凸包性、连续性、几何变换不变性等性质。2023/1/986双三次双三次B样条曲面样条曲面2023/1/9878.5 有理样条曲线曲面有理样条曲线曲面NURBS方法:非均匀有理B样条(NonuniformRationalB-S

18、pline)方法8.5.1 NURBS曲线曲面的定义曲线曲面的定义定义定义:2023/1/988例例:假定用定义在三个控制顶点和开放均匀的节点矢量上的二次(三阶)B样条函数来拟合,于是,T=(0,0,0,1,1,1),取权函数为:2023/1/989则有理B样条的表达式为:2023/1/990然后取不同的r值得到各种二次曲线:2023/1/9912023/1/992NURBS曲面曲面可由下面的有理参数多项式函数表示:2023/1/9938.5.2 有理基函数的性质有理基函数的性质NURBS曲线也可用有理基函数的形式表示:2023/1/9941普遍性普遍性2局部性局部性3凸包性凸包性4可微性可微性5权因子权因子8.5.3 NURBS曲线曲面的特点曲线曲面的特点 2023/1/9958.6 曲线曲面的转换和计算曲线曲面的转换和计算8.6.1 样条曲线曲面的转换样条曲线曲面的转换2023/1/996例:2023/1/997三次Hermite样条矩阵:三次Bezier样条矩阵:三次均匀B样条矩阵:2023/1/9988.6.2 样条曲线曲面的离散生成样条曲线曲面的离散生成1Horner规则2向前差分计算3细分2023/1/999习题习题2023/1/91002023/1/9101

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁