2019高考数学二轮复习 专题四 解析几何 规范答题示例6 直线与圆锥曲线的位置关系学案.doc

上传人:随风 文档编号:722485 上传时间:2019-06-07 格式:DOC 页数:3 大小:73.50KB
返回 下载 相关 举报
2019高考数学二轮复习 专题四 解析几何 规范答题示例6 直线与圆锥曲线的位置关系学案.doc_第1页
第1页 / 共3页
2019高考数学二轮复习 专题四 解析几何 规范答题示例6 直线与圆锥曲线的位置关系学案.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《2019高考数学二轮复习 专题四 解析几何 规范答题示例6 直线与圆锥曲线的位置关系学案.doc》由会员分享,可在线阅读,更多相关《2019高考数学二轮复习 专题四 解析几何 规范答题示例6 直线与圆锥曲线的位置关系学案.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1规范答题示例规范答题示例 6 6 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系典例 6 (15 分)在平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,x2 a2y2 b232且点在椭圆C上(3,12)(1)求椭圆C的方程;(2)设椭圆E:1,P为椭圆C上任意一点,过点P的直线ykxm交椭圆E于x2 4a2y2 4b2A,B两点,射线PO交椭圆E于点Q.求的值;求ABQ面积的最大值|OQ| |OP|审题路线图 (1)椭圆C上点满足条件得到a,b的关系式基本量法求得椭圆C的方程(2)P在C上,Q在E上P,Q共线 设坐标代入方程求出|OQ|OP|直线ykxm和椭圆E的方程联立通法研

2、究判别式并判断根与系数的关系用m,k表示SOAB求SOAB的最值利用得SABQ和SOAB的关系得SABQ的最大值规 范 解 答分 步 得 分构 建 答 题 模 板解 (1)由题意知1.又,3 a21 4b2a2b2a32解得a24,b21.所以椭圆C的方程为y21.3 分x2 4(2)由(1)知椭圆E的方程为1.x2 16y2 4设P(x0,y0),由题意知Q(x0,y0)|OQ| |OP|因为y1,又1,即x2 0 42 0x0216y0241,2 4(x2 0 4y2 0)所以2,即2.7 分|OQ| |OP|设A(x1,y1),B(x2,y2)将ykxm代入椭圆E的方程,可得(14k2)

3、第一步求圆锥曲线方程:根据基本量法确定圆锥曲线的方程第二步联立消元:将直线方程和圆锥曲线方程联立得到方程:Ax2BxC0,然后研究判别式,利用根与系数的关系得等式第三步2x28kmx4m2160,由0,可得m20”和“0”者,每处|OQ| |OP|扣 2 分;联立方程消元得出关于x的一元二次方程给 2 分;根与系数的关系写出后给 1 分;求最值时,不指明最值取得的条件扣 1 分跟踪演练 6 (2018全国)设椭圆C:y21 的右焦点为F,过F的直线l与C交于x2 2A,B两点,点M的坐标为(2,0)(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:OMAOMB.(1)解 由

4、已知得F(1,0),l的方程为x1.由已知可得,点A的坐标为或.(1,22) (1,22)又M(2,0),所以AM的方程为yx或yx.2222223即xy20 或xy20.22(2)证明 当l与x轴重合时,OMAOMB0.当l与x轴垂直时,OM为AB的垂直平分线,所以OMAOMB.当l与x轴不重合也不垂直时,设l的方程为yk(x1)(k0),A(x1,y1),B(x2,y2),则x10 恒成立,所以x1x2,x1x2.4k2 2k212k22 2k21则 2kx1x23k(x1x2)4k0,4k34k12k38k34k 2k21从而kMAkMB0,故MA,MB的倾斜角互补所以OMAOMB.综上,OMAOMB.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁