《轴向拉压杆的强度计算精品文稿.ppt》由会员分享,可在线阅读,更多相关《轴向拉压杆的强度计算精品文稿.ppt(81页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、轴向拉压杆的强度计算第1页,本讲稿共81页1 1 1 1 轴向拉伸与压缩的概念轴向拉伸与压缩的概念轴向拉伸与压缩的概念轴向拉伸与压缩的概念在工程中以拉伸或压缩在工程中以拉伸或压缩为主要变形的杆件,称为主要变形的杆件,称为:为:拉杆拉杆拉杆拉杆和和压杆压杆压杆压杆若杆件所承受的外力或外力合力作用线与杆轴线重合的若杆件所承受的外力或外力合力作用线与杆轴线重合的变形,称为变形,称为轴向拉伸轴向拉伸轴向拉伸轴向拉伸或或轴向压缩轴向压缩轴向压缩轴向压缩。预备知识预备知识第2页,本讲稿共81页 这些杆件虽然形状、加力方式等各有不同,但是他们具有共同的受力和变形特点:外力(或外力的合力)的作用线与杆件的轴线
2、重合,杆的两相邻横截面沿杆轴线方向产生相对移动,而杆件的长度伸长或缩短,同时横向尺寸相应的缩短或伸长。第3页,本讲稿共81页2 2 轴向拉轴向拉轴向拉轴向拉(压压压压)杆的内力与轴力图杆的内力与轴力图杆的内力与轴力图杆的内力与轴力图拉压杆的内力:拉压杆的内力:拉压杆的内力:拉压杆的内力:切、留、代、平切、留、代、平切、留、代、平切、留、代、平 唯一内力分量为唯一内力分量为轴力轴力轴力轴力,其作用线垂直于横截面沿杆轴线其作用线垂直于横截面沿杆轴线并通过形心。并通过形心。通常通常通常通常规规规规定:定:定:定:轴轴轴轴力使杆件受拉力使杆件受拉力使杆件受拉力使杆件受拉为为为为正,受正,受正,受正,受
3、压为负压为负压为负压为负。第4页,本讲稿共81页轴力图轴力图轴力图轴力图 用平行于轴线的坐标表示横截面的位置,垂直于杆轴线用平行于轴线的坐标表示横截面的位置,垂直于杆轴线的坐标表示横截面上轴力的数值,以此表示轴力与横截面位的坐标表示横截面上轴力的数值,以此表示轴力与横截面位置关系的几何图形,称为置关系的几何图形,称为轴力图轴力图轴力图轴力图。作轴力图时应注意以下几点:作轴力图时应注意以下几点:作轴力图时应注意以下几点:作轴力图时应注意以下几点:1、轴力图的位置应和杆件的位置相对应。轴力的大小,按、轴力图的位置应和杆件的位置相对应。轴力的大小,按比例画在坐标上,并在图上标出代表点数值。比例画在坐
4、标上,并在图上标出代表点数值。2、习惯上将正值(拉力)的轴力图画在坐标的正向;负值、习惯上将正值(拉力)的轴力图画在坐标的正向;负值(压力)的轴力图画在坐标的负向。(压力)的轴力图画在坐标的负向。第5页,本讲稿共81页例例例例1 1 1 1:内力是由内力是由“外力外力”引起的,仅表示某截面上分布内力向引起的,仅表示某截面上分布内力向截面形心简化的结果。而构件的变形和强度不仅取决于内力,截面形心简化的结果。而构件的变形和强度不仅取决于内力,还取决于构件截面的形状和大小以及内力在截面上的分布情还取决于构件截面的形状和大小以及内力在截面上的分布情况。为此,需引入况。为此,需引入应力应力应力应力的概念
5、的概念第6页,本讲稿共81页 应力:应力:应力:应力:指截面上一点处单位面积内的分布内力;指截面上一点处单位面积内的分布内力;或是指内力在一点处的集度。或是指内力在一点处的集度。8 81 1、应力与应变的基本概念、应力与应变的基本概念1 1 1 1、应力的概念、应力的概念、应力的概念、应力的概念平均平均应应力:力:M点处的内力集度(总应力):点处的内力集度(总应力):一一点处的总应力点处的总应力p是矢量,其方向为此处内力的极限方向。是矢量,其方向为此处内力的极限方向。第7页,本讲稿共81页 应力与截面既不垂直也不相切,力学中总是将它分解为垂直于截面和相切于截面的两个分量,如图:正应力(或法向应
6、力)正应力(或法向应力)正应力(或法向应力)正应力(或法向应力):指与截面垂直的应力分量,用指与截面垂直的应力分量,用表示;表示;剪应力(或切向应力)剪应力(或切向应力)剪应力(或切向应力)剪应力(或切向应力):指与截面相切的应力分量,用指与截面相切的应力分量,用表示。表示。第8页,本讲稿共81页应力的正、负号规定:应力的正、负号规定:应力的正、负号规定:应力的正、负号规定:正应力以拉应力为正,压应力为负;正应力以拉应力为正,压应力为负;切应力以使所作用的微段有顺时针方向转动趋势者为切应力以使所作用的微段有顺时针方向转动趋势者为正,反之为负。正,反之为负。应力的单位:应力的单位:应力的单位:应
7、力的单位:帕斯卡,简称为帕,符号为帕斯卡,简称为帕,符号为帕斯卡,简称为帕,符号为帕斯卡,简称为帕,符号为“Pa”Pa”Pa ,kPa(千帕)(千帕),MPa(兆帕)(兆帕),GPa(吉帕)(吉帕)1MPa=106N/m2=106N/106mm2=1N/mm2第9页,本讲稿共81页F F F FC C C C D D D D E E E E 位移线位移角位移变形线变形角变形应变线(正)应变角(切)应变A A A AA A A A C C C CD D D DE E E E2 2 2 2、应变的概念、应变的概念、应变的概念、应变的概念正负号线(正)应变:微段伸长为正;反之为负角(切)应变:直角变
8、小为正;反之为负第10页,本讲稿共81页试验现象(矩形截面试件):试验现象(矩形截面试件):周线:平移,形状不变,保持平行;周线:平移,形状不变,保持平行;纵向线:伸长,保持平行,与周线正交。纵向线:伸长,保持平行,与周线正交。应力是内力的集度,内力或应力均产生在杆件内部,是应力是内力的集度,内力或应力均产生在杆件内部,是看不到的。看不到的。应力与变形有关,应力与变形有关,所以研究应力还得从所以研究应力还得从观察变形出发。观察变形出发。8 8 2 2、轴向拉压杆的应力计算、轴向拉压杆的应力计算、轴向拉压杆的应力计算、轴向拉压杆的应力计算1 1 1 1、横截面上的应力、横截面上的应力、横截面上的
9、应力、横截面上的应力第11页,本讲稿共81页 拉(压)杆横截面上的内力拉(压)杆横截面上的内力是轴力,其方向垂直于横截面,是轴力,其方向垂直于横截面,因此,与轴力相应的只可能是垂因此,与轴力相应的只可能是垂直于截面的正应力,即直于截面的正应力,即拉(压)拉(压)拉(压)拉(压)杆横截面上只有正应力,没有切杆横截面上只有正应力,没有切杆横截面上只有正应力,没有切杆横截面上只有正应力,没有切应力应力应力应力。平面假设:平面假设:平面假设:平面假设:受轴向拉伸的杆件,变形后横截面仍保持为平面,两受轴向拉伸的杆件,变形后横截面仍保持为平面,两平面相对位移了一段距离。平面相对位移了一段距离。第12页,本
10、讲稿共81页假想杆件是由若干与轴线平行的纵向纤维组成的,任意两个假想杆件是由若干与轴线平行的纵向纤维组成的,任意两个横截面之间所有纵向纤维的伸长均相同;又因为材料是均匀横截面之间所有纵向纤维的伸长均相同;又因为材料是均匀的,各纤维的性质相同,因此其受力也一样,即轴力在横截的,各纤维的性质相同,因此其受力也一样,即轴力在横截面上是均匀分布的。面上是均匀分布的。轴向拉压等截面直杆,轴向拉压等截面直杆,横截面上正应力横截面上正应力均匀均匀均匀均匀分布分布分布分布 第13页,本讲稿共81页 式中式中FN为轴力,为轴力,A为横截面的面积。为横截面的面积。的正负符号约定:的正负符号约定:的正负符号约定:的
11、正负符号约定:拉应力为正,压应力为负拉应力为正,压应力为负拉应力为正,压应力为负拉应力为正,压应力为负-轴向拉(压)杆件横截面上轴向拉(压)杆件横截面上 各点正应力各点正应力的计算公式。的计算公式。注意:注意:注意:注意:1、杆端集中力作用点附近区域内的应力分布比杆端集中力作用点附近区域内的应力分布比较复杂,并非均匀分布,较复杂,并非均匀分布,=FN/A只能计算该区域内只能计算该区域内横截面上的平均应力,而不是应力的真实情况。横截面上的平均应力,而不是应力的真实情况。第14页,本讲稿共81页 2、实际上,外荷载作用方式有各种可能,引起的变形实际上,外荷载作用方式有各种可能,引起的变形规律比较复
12、杂,从而应力分布规律及其计算公式亦较复杂,规律比较复杂,从而应力分布规律及其计算公式亦较复杂,其研究已经超出材料力学范围。其研究已经超出材料力学范围。3、研究表明,弹性杆件横截面上的应力分布规律在距研究表明,弹性杆件横截面上的应力分布规律在距外荷载作用区域一定距离后,不因外荷载作用方式而改变。外荷载作用区域一定距离后,不因外荷载作用方式而改变。这一结论称为这一结论称为圣维南原理圣维南原理。4、今后假定,在未要求精确计算杆上外力作用点附近今后假定,在未要求精确计算杆上外力作用点附近截面内的应力时,轴向拉(压)杆在全长范围内,截面内的应力时,轴向拉(压)杆在全长范围内,=FN/A均适用。均适用。第
13、15页,本讲稿共81页例例例例:图示阶梯杆,第图示阶梯杆,第、段为铜质的,横截面积段为铜质的,横截面积A1=20cm2,第第段为钢质的,横截面积段为钢质的,横截面积A2=10cm2,试求杆中的最大正应力。,试求杆中的最大正应力。解:解:解:解:作出轴力图如图作出轴力图如图压应力拉应力第16页,本讲稿共81页中的负号表示BC杆的应力为压应力,即BC杆为压杆。例例例例 图示三角托架中,图示三角托架中,AB杆为圆截面钢杆,直径杆为圆截面钢杆,直径d=30mm;BC杆为正方形截面木杆,截面边长杆为正方形截面木杆,截面边长a100mm。已知。已知F 50kN,试,试求各杆的应力。求各杆的应力。解解解解
14、取结点取结点B为分离体,其受力为分离体,其受力如图所示,由平衡条件可得如图所示,由平衡条件可得可得第17页,本讲稿共81页例例例例 一阶梯形直杆受力如图所示,已知横截面面积为一阶梯形直杆受力如图所示,已知横截面面积为 试求各横截面上的应力。试求各横截面上的应力。解:解:解:解:1 1、计算轴力画轴力图计算轴力画轴力图利用截面法可求得阶梯杆利用截面法可求得阶梯杆各段的轴力为:各段的轴力为:F1=50kN,F2=-30kN,F3=10kN,F4=-20kN。轴力图。轴力图。F第18页,本讲稿共81页(2)、计算各段的正应力)、计算各段的正应力ABAB段:段:BCBC段:段:CDCD段:段:DEDE
15、段:段:F第19页,本讲稿共81页 称为称为轴力方程轴力方程轴力方程轴力方程。该轴力方程表明。该轴力方程表明FN是关于截面位置是关于截面位置x的的一次函数,轴力图如图所示。一次函数,轴力图如图所示。例:例:例:例:图示杆图示杆AB,上端固定、下端自由,长为,上端固定、下端自由,长为l,横截面面积为,横截面面积为A,材料密度为,材料密度为,试分析该杆由自重引起的轴力及横截面上,试分析该杆由自重引起的轴力及横截面上的应力沿杆长的分布规律。的应力沿杆长的分布规律。解:解:解:解:由截面法,在距下端为由截面法,在距下端为 x截面上的轴力为截面上的轴力为表明该杆的轴力是截面位置x的连续函数,第20页,本
16、讲稿共81页时,时,沿杆长的分布规律如图(c)所示;并可得横截面上的正应力沿杆长呈线性分布。时,时,第21页,本讲稿共81页 在下一节拉伸与压缩试验中会看到,铸铁试件压缩时,其断面并非横截面,而是斜截面。这说明仅计算拉压杆横截面上的应力是不够的,为了全面分析解决杆件的强度问题,还需研究斜截面上的应力。2 2 2 2、斜截面上的应力、斜截面上的应力、斜截面上的应力、斜截面上的应力第22页,本讲稿共81页 图示一等直杆,其横截面面积为图示一等直杆,其横截面面积为A,下面研究与横截面成,下面研究与横截面成角角的斜截面的斜截面 m-m 上的应力。此处上的应力。此处角以从横截面外法线到斜角以从横截面外法
17、线到斜截面外法线逆时针向转动为正。沿截面外法线逆时针向转动为正。沿 m-m 截面处假想地将杆截截面处假想地将杆截成两段,研究左边部分,如图(成两段,研究左边部分,如图(b)所示,可得)所示,可得m-m截面上的截面上的内力为:内力为:和横截面上正应力分布和横截面上正应力分布规律的研究方法相似,规律的研究方法相似,同样可以得出同样可以得出斜截面上斜截面上斜截面上斜截面上的总应力也是均匀分布的总应力也是均匀分布的总应力也是均匀分布的总应力也是均匀分布的,故的,故第23页,本讲稿共81页为杆件横截面上的为杆件横截面上的正应力正应力正应力正应力。式中为斜截面m-m的面积。因为所以将总应力将总应力p分解为
18、两个分量:分解为两个分量:m-m截面法线方向的正应力截面法线方向的正应力和和切线方向的切应力切线方向的切应力第24页,本讲稿共81页和和都是都是角的函数,角的函数,随随变化而变化,其极值及变化而变化,其极值及其所在截面的方位为:其所在截面的方位为:1.当当=0 时,即横截面上,时,即横截面上,达到极值达到极值;当当=90时,即纵截面上,时,即纵截面上,达到极值达到极值0,在正应力的极值面上切应力为零。在正应力的极值面上切应力为零。2.绝对值最大的切应力发生在的斜截面上,的斜截面上,且斜截面上的正应力斜截面上的正应力第25页,本讲稿共81页 在实际工程中,由于构造上的要求,有些构件需要开孔或挖槽
19、(如油孔、沟槽、轴肩或螺纹的部位),其横截面上的正应力不再是均匀分布的。板条受拉时,圆孔直径所在横截面上的应力分布由试验或弹性力学结果可绘出,如图(b)所示,其特点是:在小孔附近的局部区域内,应力急剧增大,但在稍远处,应力迅速降低而趋于均匀。3 3 3 3、应力集中的概念、应力集中的概念、应力集中的概念、应力集中的概念第26页,本讲稿共81页 这种由于杆件形状或截面尺寸突然改变而引起局部区这种由于杆件形状或截面尺寸突然改变而引起局部区域的应力急剧增大的现象称为域的应力急剧增大的现象称为应力集中。应力集中。应力集中。应力集中。称为应力集中因数,它反映了应力集中的程度,是一个大于1的因数。设产生应
20、力集中现象的截面上最大应力为设产生应力集中现象的截面上最大应力为max,同一,同一截面视作均匀分布按净面截面视作均匀分布按净面积积A0计算的名义应力为计算的名义应力为0,即即则比值第27页,本讲稿共81页 工程构件受力后,其几何形状和几何尺寸都要发生改变,工程构件受力后,其几何形状和几何尺寸都要发生改变,这种改变称为这种改变称为变形变形变形变形。当荷载不超过一定的范围时,构件在卸去。当荷载不超过一定的范围时,构件在卸去荷载后可以恢复原状。但当荷载过大时,则在荷载卸去后只能荷载后可以恢复原状。但当荷载过大时,则在荷载卸去后只能部分地复原,而残留一部分不能消失的变形。部分地复原,而残留一部分不能消
21、失的变形。8 83 3、轴向拉压杆的变形、轴向拉压杆的变形胡克定律胡克定律1 1 1 1、轴向变形、轴向变形、轴向变形、轴向变形弹性变形:弹性变形:弹性变形:弹性变形:是指在卸去荷载后能完全消失的那一部分变形是指在卸去荷载后能完全消失的那一部分变形塑性变形:塑性变形:塑性变形:塑性变形:是指不能消失而残留下来的那一部分变形是指不能消失而残留下来的那一部分变形第28页,本讲稿共81页 以图示等直圆杆为例,设杆件变形前原长为以图示等直圆杆为例,设杆件变形前原长为l,横向尺寸,横向尺寸为为d,变形后长度为,变形后长度为l,横向尺寸为,横向尺寸为d,轴向变形轴向变形轴向变形轴向变形横向变形横向变形横向
22、变形横向变形l、d表示杆件轴向、横向的表示杆件轴向、横向的绝对变形量绝对变形量绝对变形量绝对变形量,量纲均为,量纲均为 长度长度。第29页,本讲稿共81页绝对变形量不能全面反映杆件的变形程度,引入绝对变形量不能全面反映杆件的变形程度,引入线应变线应变的概念。的概念。线应变是指单位长度的长度改变量,用线应变是指单位长度的长度改变量,用线应变是指单位长度的长度改变量,用线应变是指单位长度的长度改变量,用 表示,量纲为一。表示,量纲为一。表示,量纲为一。表示,量纲为一。-轴向线应变轴向线应变轴向线应变轴向线应变,简称线应变线应变线应变线应变。-横向线应变横向线应变横向线应变横向线应变拉伸拉伸时时,l
23、0,d0,0;压缩时压缩时,l0,0;,与与是反号的。是反号的。第30页,本讲稿共81页试验表明:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变与轴向线应变的比值为一常数,即称为称为泊松比泊松比泊松比泊松比,量纲为一,其值随材料而异,可通过试验测定。,量纲为一,其值随材料而异,可通过试验测定。第31页,本讲稿共81页-计计算出的是算出的是轴轴向向纤维纤维在全在全长长l内的内的平均平均平均平均线应变线应变线应变线应变,当沿杆,当沿杆长长度均匀度均匀变变形(所有截面的正形(所有截面的正应应力都相等)力都相等)时时,它也代表,它也代表l长长度范度范围围内任一点内任一点处轴处轴向方向的向方向的
24、线应变线应变。当沿杆。当沿杆长长度非均度非均匀匀变变形形时时(如一等直杆在自重作用下的(如一等直杆在自重作用下的变变形)并不反映沿形)并不反映沿长长度各点度各点处处的的轴轴向向线应变线应变。说明:说明:说明:说明:第32页,本讲稿共81页 拉(压)杆的变形与材料的性能有关,只能通过试验来获得。拉(压)杆的变形与材料的性能有关,只能通过试验来获得。试验表明,在弹性变形范围内,杆件的变形试验表明,在弹性变形范围内,杆件的变形l与轴力与轴力FN及杆长及杆长l成正比,与横截面面积成正比,与横截面面积A成反比,即成反比,即引入比例系数E,把上式写成式中式中E为为弹性模量,弹性模量,弹性模量,弹性模量,表
25、示材料抵抗弹性变形的能力,是一个只表示材料抵抗弹性变形的能力,是一个只与材料有关的物理量,其值可以通过试验测得,量纲与应力量与材料有关的物理量,其值可以通过试验测得,量纲与应力量纲相同。纲相同。弹性模量弹性模量弹性模量弹性模量E E和泊松比和泊松比和泊松比和泊松比 都是材料的弹性常数都是材料的弹性常数都是材料的弹性常数都是材料的弹性常数。第33页,本讲稿共81页 EA称为轴向拉(压)杆的称为轴向拉(压)杆的抗拉(压)刚度,抗拉(压)刚度,抗拉(压)刚度,抗拉(压)刚度,表示杆件抵抗表示杆件抵抗拉伸(压缩)的能力。拉伸(压缩)的能力。对于长度相等且受力相同的杆件,其抗拉(压)刚度越大对于长度相等
26、且受力相同的杆件,其抗拉(压)刚度越大则杆件的变形越小。则杆件的变形越小。-轴向拉(压)杆件的变形与EA成反比。或称为称为胡克定律,胡克定律,胡克定律,胡克定律,表明,表明,在弹性变形范围内,应力与应变成正在弹性变形范围内,应力与应变成正在弹性变形范围内,应力与应变成正在弹性变形范围内,应力与应变成正比。比。比。比。第34页,本讲稿共81页几种常用材料的几种常用材料的E和和的约值的约值材料名称E/(GPa)低碳钢1962160.240.28合金钢1862060.250.30灰铸铁78.51570.230.27铜及其合金72.61280.310.42铝合金700.33第35页,本讲稿共81页只适
27、用于在杆长为l长度内F、FN、E、A均为常值的情况下,即在杆为l长度内变形是均匀的情况。胡克定律胡克定律胡克定律胡克定律若杆件的轴力FN及抗拉(压)刚度EA沿杆长分段为常数,则式中FNi、(EA)i和li为杆件第i段的轴力、抗拉(压)刚度和长度。若杆件的轴力和抗拉(压)刚度沿杆长为连续变化时,则第36页,本讲稿共81页例例例例 图示一等直钢杆,横截面为图示一等直钢杆,横截面为bh=1020mm2的矩形,材料的矩形,材料的弹性模量的弹性模量E=200GPa。试计算:(。试计算:(1)每段的轴向线变形;)每段的轴向线变形;(2)每段的线应变;()每段的线应变;(3)全杆的总伸长。)全杆的总伸长。解
28、解解解(1)设左、右两段分别为)设左、右两段分别为、段,段,由轴力图:由轴力图:第37页,本讲稿共81页全杆的总伸长bh=1020mm2E=200GPa第38页,本讲稿共81页例例例例 图示阶梯杆,第图示阶梯杆,第段横截面为直径段横截面为直径20mm的圆形,第的圆形,第段段横截面为边长横截面为边长30mm的正方形,第的正方形,第段横截面为直径段横截面为直径15mm的的圆形,圆形,两端的轴向拉力两端的轴向拉力F=20kN,材料的弹性模量,材料的弹性模量E=210GPa。求杆中的最大正应力和杆的总伸长。求杆中的最大正应力和杆的总伸长。解解解解第39页,本讲稿共81页第第段直径段直径20mm第第段边
29、长段边长30mm,第,第段直径段直径15mm第40页,本讲稿共81页各段伸长量总伸长量第41页,本讲稿共81页 材料的力学性材料的力学性材料的力学性材料的力学性质质质质是指在外力作用下材料在是指在外力作用下材料在是指在外力作用下材料在是指在外力作用下材料在变变变变形和破坏形和破坏形和破坏形和破坏过过过过程程程程中所表中所表中所表中所表现现现现出的性能出的性能出的性能出的性能,如前面提到的,如前面提到的弹弹性常数性常数 E 和和,以及胡克,以及胡克定律本身等都是材料所固有的力学性定律本身等都是材料所固有的力学性质质。材料的力学性材料的力学性质质是是对对构件构件进进行行强强度、度、刚刚度和度和稳稳
30、定性定性计计算的算的基基础础,一般由,一般由试验试验来来测测定。定。8 84 4、材料在拉伸与压缩时的力学性能材料在拉伸与压缩时的力学性能第42页,本讲稿共81页 材料的力学性质除取决于材料本身的成分和组织结构外,材料的力学性质除取决于材料本身的成分和组织结构外,还与荷载作用状态、温度和加载方式等因素有关。还与荷载作用状态、温度和加载方式等因素有关。重点重点讨论常温、静载条件下金属材料在拉伸或压缩时的力讨论常温、静载条件下金属材料在拉伸或压缩时的力讨论常温、静载条件下金属材料在拉伸或压缩时的力讨论常温、静载条件下金属材料在拉伸或压缩时的力学性质。学性质。学性质。学性质。为使不同材料的试验结果能
31、进行对比,对于钢、铁和有色为使不同材料的试验结果能进行对比,对于钢、铁和有色金属材料,需将试验材料按金属材料,需将试验材料按金属拉伸试验试样金属拉伸试验试样的规定加工的规定加工成成标准试件,标准试件,标准试件,标准试件,分为圆截面试件和矩形截面试件。分为圆截面试件和矩形截面试件。第43页,本讲稿共81页,金属材料的压缩试验,试件一般制成短圆柱体。为了保证试验过程中试件不发生失稳,圆柱的高度取为直径的13倍。标准试件:标准试件:标准试件:标准试件:试验段试验段l0称为称为标距标距标距标距。试件的尺寸统一的规定:试件的尺寸统一的规定:对于对于矩形截面试件矩形截面试件矩形截面试件矩形截面试件,记中部
32、原始横截面面积为,记中部原始横截面面积为A0,短试件:短试件:短试件:短试件:/=5.65 =5.65长试件:长试件:长试件:长试件:/=11.3 =11.3对于对于圆截面试件圆截面试件圆截面试件圆截面试件,设中部直径为,设中部直径为d0,则,则五倍试件:五倍试件:五倍试件:五倍试件:十倍试件:十倍试件:十倍试件:十倍试件:第44页,本讲稿共81页工程上常用的材料品种很多,工程上常用的材料品种很多,以以低碳钢低碳钢低碳钢低碳钢和和铸铁铸铁铸铁铸铁为主要代表,介绍材料的力学性质。为主要代表,介绍材料的力学性质。实验设备:一类称为万能试验机;实验设备:一类称为万能试验机;另一类设备是用来测试变形的
33、变形仪。另一类设备是用来测试变形的变形仪。低碳钢拉伸时的力学性能低碳钢拉伸时的力学性能低碳钢拉伸时的力学性能低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,其力学性质具有代表性。第45页,本讲稿共81页 将试件装入材料试验机的夹头中,启动试验机开始缓慢将试件装入材料试验机的夹头中,启动试验机开始缓慢匀速加载,直至试件最后被拉断或压坏。匀速加载,直至试件最后被拉断或压坏。加载过程中,试件所受的轴向力加载过程中,试件所受的轴向力F可由试验机直接读出,可由试验机直接读出,而试件标距部分的变形量而试件标距部分的变形量l可由变形仪读出。根据试验过程可由变形仪读出
34、。根据试验过程中测得的一系列数据,可以绘出中测得的一系列数据,可以绘出F与与l之间的关系曲线,称之间的关系曲线,称为为荷载位移曲线荷载位移曲线荷载位移曲线荷载位移曲线。第46页,本讲稿共81页荷载位移曲线与试件的几何尺寸有关,不能准确反映材料的力学性能,为了消除影响,用试件横截面上的正应力,即作为纵坐标;用试件轴向线应变作为横坐标。这样所得的拉伸试验曲线称为作为横坐标。这样所得的拉伸试验曲线称为应力应力应力应力-应变曲线。应变曲线。应变曲线。应变曲线。应力应力-应变曲线全面描述了材料从开始受力到最后破坏应变曲线全面描述了材料从开始受力到最后破坏全过程中的力学性态,从而可以确定不同材料发生失效时
35、的全过程中的力学性态,从而可以确定不同材料发生失效时的应力值,也称为应力值,也称为强度指标强度指标,以及,以及表征材料塑性变形能力的塑表征材料塑性变形能力的塑表征材料塑性变形能力的塑表征材料塑性变形能力的塑性指标。性指标。性指标。性指标。第47页,本讲稿共81页低碳钢拉伸时的荷载位移曲线(也称为拉伸图)和低碳钢拉伸时的荷载位移曲线(也称为拉伸图)和-曲线如图。曲线如图。荷载位移曲线荷载位移曲线荷载位移曲线荷载位移曲线-曲线曲线曲线曲线第48页,本讲稿共81页低碳钢为典型的低碳钢为典型的塑性材料塑性材料塑性材料塑性材料。在在应力应力应力应力应变图应变图应变图应变图中呈现如下四个阶段:中呈现如下四
36、个阶段:弹性阶段:弹性阶段:弹性阶段:弹性阶段:曲线的初始阶段(曲线的初始阶段(OB段),试件的变形是段),试件的变形是弹性变形。弹性变形。当应力超过当应力超过B点所对应的点所对应的应力后,试件将产生塑性应力后,试件将产生塑性变形。变形。将将OB段最高点所对应的应力段最高点所对应的应力即只产生弹性变形的最大应即只产生弹性变形的最大应力称为力称为弹性极限弹性极限弹性极限弹性极限,用,用e表示。表示。第49页,本讲稿共81页在弹性阶段的直线(在弹性阶段的直线(OA)段,)段,与与成正比,胡克定律就是由成正比,胡克定律就是由此而来。称直线此而来。称直线OA段的最高点段的最高点A点处的应力为点处的应力
37、为比例极限比例极限比例极限比例极限,用,用p表示。表示。只有当时,材料才服从胡克定律,时,材料才服从胡克定律,即即与与成正比,这时,称成正比,这时,称材料是材料是线弹性线弹性线弹性线弹性的。的。根据胡克定律直线OA段的斜率即为弹性模量E的值,由试验测得低碳钢的弹性模量为200GPa左右。第50页,本讲稿共81页弹性极限和比例极限的意义虽然不同,但他们的数值非常接近,因此在工程应用中对二者不作严格区分。对于低碳钢,取第51页,本讲稿共81页。屈服阶段屈服阶段屈服阶段屈服阶段。应力超过弹性极限后,试件将同时产生弹性变形。应力超过弹性极限后,试件将同时产生弹性变形和塑性变形,且应力在较小的范围内上下
38、波动,而应变急剧增和塑性变形,且应力在较小的范围内上下波动,而应变急剧增加,曲线呈大体水平但微有起落的锯齿状。如图中的加,曲线呈大体水平但微有起落的锯齿状。如图中的BC段。段。这种应力基本保持不这种应力基本保持不变,而应变却持续增长的变,而应变却持续增长的现象称为现象称为屈服或流动屈服或流动屈服或流动屈服或流动。屈服阶段最低点所对屈服阶段最低点所对应的应力称为应的应力称为屈服极限屈服极限屈服极限屈服极限,用用S表示,是判别材料表示,是判别材料是否进入塑性状态的重要是否进入塑性状态的重要参数。低碳钢参数。低碳钢第52页,本讲稿共81页 表面经抛光的试件在屈服阶段,其表面会出现与轴线表面经抛光的试
39、件在屈服阶段,其表面会出现与轴线大致成大致成45的倾斜条纹,称为的倾斜条纹,称为滑移线滑移线滑移线滑移线。这是由于拉伸时,。这是由于拉伸时,与轴线成与轴线成45截面上有最大切应力作用,使内部晶粒间相截面上有最大切应力作用,使内部晶粒间相互滑移所留下的痕迹。互滑移所留下的痕迹。材料进入屈服阶段后将产生显著的塑性变形,这在工材料进入屈服阶段后将产生显著的塑性变形,这在工程构件中一般是不允许的,所以程构件中一般是不允许的,所以屈服极限屈服极限屈服极限屈服极限 S S是确定材料设是确定材料设是确定材料设是确定材料设计强度的主要依据。计强度的主要依据。计强度的主要依据。计强度的主要依据。第53页,本讲稿
40、共81页 强化阶段强化阶段强化阶段强化阶段。试件经过屈服后,材料内部结构重新进行了调整,具有了试件经过屈服后,材料内部结构重新进行了调整,具有了抵抗新变形的能力,抵抗新变形的能力,-曲线表现为一段上升的曲线(曲线表现为一段上升的曲线(CD段)。段)。这种现象称为这种现象称为强化强化强化强化,CD段即为强化阶段。段即为强化阶段。强化阶段最高点强化阶段最高点 D点所点所对应的应力,称为对应的应力,称为强度极限强度极限强度极限强度极限,用用b表示,其中,抗拉强度表示,其中,抗拉强度极限记为极限记为抗压强度极限记为第54页,本讲稿共81页强度极限是衡量材料强度的另一个重要指标。强度极限是衡量材料强度的
41、另一个重要指标。强度极限是衡量材料强度的另一个重要指标。强度极限是衡量材料强度的另一个重要指标。对于低碳钢,对于低碳钢,强化阶段试件的变形主要是强化阶段试件的变形主要是塑性变形塑性变形塑性变形塑性变形,其变形量远大于,其变形量远大于弹性阶段。在此阶段可以较明显地观察到整个试件横向尺寸弹性阶段。在此阶段可以较明显地观察到整个试件横向尺寸的缩小。的缩小。第55页,本讲稿共81页 局部变形阶段:局部变形阶段:局部变形阶段:局部变形阶段:在在-曲线中,曲线中,D点之前,试件沿长度方向其变形基本上是点之前,试件沿长度方向其变形基本上是均匀的,但当超过均匀的,但当超过D点之后,试件的某一局部范围内变形急剧
42、点之后,试件的某一局部范围内变形急剧增加,横截面面积显著减小,形成图示的增加,横截面面积显著减小,形成图示的“颈颈”,该现象称为,该现象称为颈缩颈缩颈缩颈缩。由于颈部横截面面积由于颈部横截面面积急剧减小,使试件变形增急剧减小,使试件变形增加所需的拉力在下降,所加所需的拉力在下降,所以以按原始面积算出的应力按原始面积算出的应力按原始面积算出的应力按原始面积算出的应力(即(即(即(即=F/A=F/A),称为名义),称为名义),称为名义),称为名义应力)应力)应力)应力)也随之下降,如图也随之下降,如图中中DG段,直到段,直到G点试件断点试件断裂。裂。第56页,本讲稿共81页其实,此阶段的真实应力(
43、即颈部横截面上的应力)随变形其实,此阶段的真实应力(即颈部横截面上的应力)随变形增加仍是增大的,如图中的虚线增加仍是增大的,如图中的虚线DG 所示。所示。第57页,本讲稿共81页(2)两个塑性指标)两个塑性指标 试件断裂后,弹性变形全部消失,而塑性变形保留下来,试件断裂后,弹性变形全部消失,而塑性变形保留下来,工程中常用以下两个量作为衡量材料塑性变形程度的指标,工程中常用以下两个量作为衡量材料塑性变形程度的指标,即即 延伸率延伸率延伸率延伸率:设试件断裂后标距长度为设试件断裂后标距长度为l1,原始长度为,原始长度为l0,则延伸率,则延伸率定义为定义为第58页,本讲稿共81页 断面收缩率断面收缩
44、率断面收缩率断面收缩率:设试件标距范围内的横截面面积为设试件标距范围内的横截面面积为A0,断裂后颈部的最,断裂后颈部的最小横截面面积为小横截面面积为A1,则断面收缩率定义为,则断面收缩率定义为和和越大,说明材料的塑性变形能力越强。越大,说明材料的塑性变形能力越强。工程中将十倍试件的延伸率工程中将十倍试件的延伸率-塑性材料塑性材料塑性材料塑性材料-脆性材料脆性材料脆性材料脆性材料低碳钢的延伸率约为20%30%,是一种典型的塑性材料。第59页,本讲稿共81页称为称为卸载定律。卸载定律。卸载定律。卸载定律。外力全部卸去后,图中外力全部卸去后,图中on段段表示表示m点时试件中的塑性应变,点时试件中的塑
45、性应变,而而nk段表示消失的弹性应变。段表示消失的弹性应变。卸载定律及冷作硬化卸载定律及冷作硬化卸载定律及冷作硬化卸载定律及冷作硬化 当加载到任一点,如图中的当加载到任一点,如图中的当加载到任一点,如图中的当加载到任一点,如图中的mm点,然后缓慢点,然后缓慢点,然后缓慢点,然后缓慢卸载卸载卸载卸载,试,试,试,试验表明,验表明,验表明,验表明,-曲线将沿直线曲线将沿直线曲线将沿直线曲线将沿直线mnmn到达到达到达到达n n点,且直线点,且直线点,且直线点,且直线mnmn与初始与初始与初始与初始加载时的直线加载时的直线加载时的直线加载时的直线OAOA平行。这说明在卸载过程中应力与应变平行。这说明
46、在卸载过程中应力与应变平行。这说明在卸载过程中应力与应变平行。这说明在卸载过程中应力与应变也保持为线性关系,即也保持为线性关系,即也保持为线性关系,即也保持为线性关系,即第60页,本讲稿共81页冷作硬化冷作硬化冷作硬化冷作硬化:若加载到强化阶段某点若加载到强化阶段某点m,卸载后立即再次加载,卸载后立即再次加载,-曲线将沿直线曲线将沿直线nm发展,到发展,到m点后大致沿曲线点后大致沿曲线mDG变化,直到变化,直到试件破坏。试件破坏。因为因为nm段的段的、都是线性关系,所以第都是线性关系,所以第二次加载时,材料的比二次加载时,材料的比例极限提高到例极限提高到m点对应点对应的应力,但塑性变形和的应力
47、,但塑性变形和延伸率有所降低,这种延伸率有所降低,这种现象称为现象称为冷作硬化冷作硬化冷作硬化冷作硬化。第61页,本讲稿共81页 若第一次卸载到若第一次卸载到n点后,让试件点后,让试件“休息休息”一段时间后再加载,一段时间后再加载,重新加载时重新加载时-曲线将沿曲线将沿nmmDG发展,材料会获得更高的发展,材料会获得更高的比例极限和强度极限,但是塑性能力进一步降低,这种现象称比例极限和强度极限,但是塑性能力进一步降低,这种现象称为为冷拉时效冷拉时效冷拉时效冷拉时效。钢筋经过冷拉处理,钢筋经过冷拉处理,可提高其抗拉强度,但是可提高其抗拉强度,但是冷拉降低了塑性性能且不冷拉降低了塑性性能且不能提高
48、抗压强度。能提高抗压强度。第62页,本讲稿共81页低碳钢压缩时的力学性质低碳钢压缩时的力学性质低碳钢压缩时的力学性质低碳钢压缩时的力学性质 低碳钢压缩时的低碳钢压缩时的-曲线如图实线所示。曲线如图实线所示。试验表明:其弹性模量试验表明:其弹性模量E、屈服极限、屈服极限S与拉伸时基本相同,与拉伸时基本相同,但流幅较短。屈服结束以后,但流幅较短。屈服结束以后,试件抗压力不断提高,既没有试件抗压力不断提高,既没有颈缩现象,也测不到抗压强度颈缩现象,也测不到抗压强度极限,最后被压成腰鼓形甚至极限,最后被压成腰鼓形甚至饼状。饼状。第63页,本讲稿共81页铸铁在拉伸和压缩时的力学性质铸铁在拉伸和压缩时的力
49、学性质铸铁在拉伸和压缩时的力学性质铸铁在拉伸和压缩时的力学性质 铸铁试件外形与低碳钢试件相同,其铸铁试件外形与低碳钢试件相同,其-曲线如图所示。曲线如图所示。铸铁拉伸时的铸铁拉伸时的-曲线没有明显的直线部分,也没有明显的屈曲线没有明显的直线部分,也没有明显的屈服和颈缩现象。服和颈缩现象。工程中认为整个拉伸阶段工程中认为整个拉伸阶段都近似服从胡克定律,约定取都近似服从胡克定律,约定取其弹性模量其弹性模量E为为150180GPa。试件的破坏形式是沿横截面拉试件的破坏形式是沿横截面拉断,是内部分子间的内聚力抗断,是内部分子间的内聚力抗抵不住拉应力所致。抵不住拉应力所致。第64页,本讲稿共81页铸铁铸
50、铁铸铁铸铁试件直至拉断时变形试件直至拉断时变形量很小,量很小,拉伸时的延伸率拉伸时的延伸率拉伸时的延伸率拉伸时的延伸率铸铁压缩破坏时,其断面铸铁压缩破坏时,其断面法线与轴线大致成法线与轴线大致成4555,是斜截面上的切应力所致。,是斜截面上的切应力所致。是典型的脆性材料。抗拉强度极限 等于150MPa左右。铸铁抗压强度极限等于800MPa左右,说明其抗压能力远远大于抗拉能力。铸铁压缩破坏属于剪切破坏。铸铁压缩破坏属于剪切破坏。第65页,本讲稿共81页 低碳钢是典型的塑性材料,铸铁是典型的脆性材料,塑性材料的延性较好,对于冷压冷弯之类的冷加工性能比脆性材料好,同时由塑性材料制成的构件在破坏前常有