《第二章机械振动例题和书后习题--高二上学期物理人教版(2019)选择性必修第一册.docx》由会员分享,可在线阅读,更多相关《第二章机械振动例题和书后习题--高二上学期物理人教版(2019)选择性必修第一册.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章 机械振动1. 简谐运动练习与应用1. 如图 2.1-5,两人合作,模拟振动曲线的记录装置。先在白纸中央画一条直线 OO,使 它平行于纸的长边,作为图像的横坐标轴。一个人用手使铅笔尖在白纸上沿垂直于 OO的方向水平振动,另一个人沿 OO的方向匀速拖动白纸,纸上就画出了一条描述笔尖振动情况的 x-t图像。 请完成这个实验,并解释:横坐标代表什么物理量?纵坐标代表什么量?为什么必须匀速拖动白纸?如果拖动白纸的速度是 510-2 m/s,在横坐标轴上应该怎样标出坐标的刻度?2. 图 2.1-6 是某质点做简谐运动的振动图像。根据图像中的信息,回答下列问题。 (1)质点离开平衡位置的最大距离有多
2、大? (2)在 1.5 s 和 2.5 s 这两个时刻,质点的位置在哪里?质点向哪个方向运动? (3)质点相对于平衡位置的位移方向在哪些时间内跟它的瞬时速度的方向相同?在哪些时间内跟瞬时速度的方向相反? (4)质点在第 2 s 末的位移是多少? (5)质点在前 2 s 内运动的路程是多少?2.简谐运动的描述【例题】如图 2.2-5,弹簧振子的平衡位置为 O 点,在 B、C 两点之间做简谐运动。B、C 相距 20 cm。小球经过 B 点时开始计时,经过 0.5 s 首次到达 C 点。 (1)画出小球在第一个周期内的 x-t 图像。 (2)求 5 s 内小球通过的路程及 5 s 末小球的位移。 解
3、 (1)以 O 点作为坐标原点,沿 OB 建立坐标轴,如图 2.2-5。以小球从 B 点开始运动的时刻作为计时起点,用正弦函数来表示小球的位移时间关系,则函数的初相位为2由于小球从最右端的B点运动到最左端的C点所用时间为0.5 s,所以振动的周期T1.0 s;由于B点和C点之间的距离为0.2 m,所以,振动的振幅 A0.1 m。根据 x Asin( 2T t 0),可得小球的位移时间关系为x 0.1sin(2t 2)m据此,可以画出小球在第一个周期内的位移时间图像,如图 2.2-6 所示。(2)由于振动的周期 T 1 s,所以在时间 t 5 s 内,小球一共做了n tT 5 次全振动。小球在一
4、次全振动中通过的路程为 4 A 0.4 m,所以小球运动的路程为 s 50.4 m 2 m ;经过 5 次全振动后,小球正好回到 B 点,所以小球的位移为 0.1 m。练习与应用1. 一个小球在平衡位置 O 点附近做简谐运动,若从 O 点开始计时,经过 3 s 小球第一次 经过 M 点,再继续运动,又经过 2 s 它第二次经过 M 点;求该小球做简谐运动的可能周期。2. 有两个简谐运动:x1 3asin(8bt 4)和 x2 9asin(8bt 2 ),它们的振幅之比是多少?它们的频率各是多少? t 0 时它们的相位差是多少?3. 图 2.2-8 是两个简谐运动的振动图像,它们的相位差是多少?
5、4. 有甲、乙两个简谐运动:甲的振幅为2 cm,乙的振幅为 3 cm,它们的周期都是 4 s, 当 t 0 时甲的位移为 2 cm,乙的相位比甲落后4。请在同一坐标系中画出这两个简谐运动的位移时间图像。5. 图 2.2-9 为甲、乙两个简谐运动的振动图像。请根据图像写出这两个简谐运动的位移随时间变化的关系式。2. 简谐运动的回复力和能量练习与应用1. 把图 2.3-2 中倾角为 的光滑斜面上的小球沿斜面拉下一段距离,然后松开。假设空 气阻力可忽略不计,试证明小球的运动是简谐运动。2. 若想判定以下振动是不是简谐运动,请你陈述求证的思路(可以不进行定量证明),空气阻力可忽略。 (1)粗细均匀的一
6、根木筷,下端绕几圈铁丝,竖直浮在较大的装有水的杯中(图2.3-3)。 把木筷往上提起一段距离后放手,木筷就在水中上下振动。(2)光滑圆弧面上有一个小球,把它从最低点移开一小段距离,放手后,小球以最低点为平衡位置左右振动(图 2.3-4)。3. 做简谐运动的物体经过 A 点时,加速度的大小是 2 m/s2 ,方向指向 B 点;当它经过 B 点时,加速度的大小是 3 m/s2 ,方向指向 A 点。若 AB 之间的距离是 10 cm,请确定它的平衡位置。4. 图 2.3-5 为某物体做简谐运动的图像, 在 0 1.5 s 范围内回答下列问题。 (1)哪些时刻物体的回复力与 0.4 s 时的回复力相同
7、? (2)哪些时刻物体的速度与 0.4 s 时的速度相同? (3)哪些时刻的动能与 0.4 s 时的动能相同? (4)哪段时间的加速度在减小? (5)哪段时间的势能在增大?4.单摆练习与应用1. 一个理想单摆,已知其周期为 T。如果由于某种原因(如转移到其他星球)自由落体加速度变为原来的12,振幅变为原来的13,摆长变为原来的14,摆球的质量变为原来的15,它的周期变为多少?2. 周期是 2 s 的单摆叫秒摆,秒摆的摆长是 多少?把一个地球上的秒摆拿到月球上去,已 知月球上的自由落体加速度为 1.6 m/s2 ,它在月球上做 50 次全振动要用多少时间?3. 图 2.4-7 是两个单摆的振动图
8、像。(1)甲、乙两个摆的摆长之比是多少? (2以向右的方向作为摆球偏离平衡位置的位移的正方向,从 t 0 起,乙第一次到达右方最大位移时,甲摆动到了什么位置?向什么方向运动?4. 一条细线下面挂着一个小球,让它自由摆动,画出它的振动图像如图 2.4-8 所示。 (1)请根据图中的数据计算出它的摆长。 (2)请根据图中的数据估算出它摆动的最大偏角。5.实验:用单摆测量重力加速度练习与应用1. 在用单摆测量重力加速度的实验中,下面的叙述哪些是正确的,哪些是错误的? A. 摆线要选择细些的、伸缩性小些的,并且尽可能长一些 B. 摆球尽量选择质量大些、体积小些的 C. 为了使摆的周期大一些,以方便测量
9、,开始时拉开摆球,使摆角较大 D. 用刻度尺测量摆线的长度 l,这就是单摆的摆长 E. 释放摆球,从摆球经过平衡位置开始计时,记下摆球做 50 次全振动所用的时间 t,则单摆周期 T t502. 某同学在实验探究 a、b 两个物理量之间的定量关系时,测得了 6 组实验数据如下表所示,它们的单位为 P、Q。请用图像(图 2.5-4)处理实验数据,寻找它们之间的定量关系,根据图像推出 a、b 之间关系的表达式,如果有常数,写出常数的数值和单位。6.受迫振动 共振练习与应用1.如图2.6-6,一个竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T形支架在竖直方向振动,T形支架下面系着一个弹簧和小球组成的
10、振动系统,小球浸没在水中。当圆盘静止时,让小球在水中振动,其阻尼振动的频率约为3 Hz。现使圆盘以4 s 的周期匀速运动,经过一段时间后,小球振动达到稳定,它振动的频率是多少?2.如图2.6-7,张紧的水平绳上吊着A、B、C三个小球。B球靠近A球,但两者的悬线长度 不同;C球远离A球,但两者的悬线长度相同。 (1)让A 球在垂直于水平绳的方向摆动,在起初一段时间内将会看到B、C球有什么表现?(2)在C球摆动起来后,用手使A、B球静止,然后松手,在起初一段时间内又将看到A、 B球有什么表现?3.汽车的车身是装在弹簧上的,某车的车身弹簧系统的固有周期是1.5 s。这辆汽车在一条起伏不平的路上行驶,
11、路面凸起之处大约都相隔8 m。汽车以多大速度行驶时,车身上下颠簸得最剧烈?4.图2.6-8是一个单摆的共振曲线。 (1)试估计此单摆的摆长。 (2)若摆长增大,共振曲线振幅最大值所对应的横坐标将怎样变化?5.图2.6-9是单摆做阻尼振动的位移时间图像,请比较摆球在P与N时刻的势能、动能、 机械能的大小。复习与提高A 组1.做简谐运动的质点在通过平衡位置时,哪些物理量分别具有最大值和最小值? 2.某一弹簧振子完成10次全振动需要2 s的时间,在此2 s的时间内通过的路程80 cm。求此弹簧振子的振幅、周期和频率。3.如图2-1,滑块在M、N之间做简谐运动。以平衡位置O为原点,建立Ox轴,向右为x
12、轴正方向。若滑块位于N点时开始计时,试画出其振动图像。4.一座摆钟走得慢了,要把它调准,应该怎样改变它的摆长?为什么?5.如图2-2,小球在半径为R的光滑球面上的A、B之间来回运动。若ABR,试证明小球的运动是简谐运动,并求出其振动的频率。6.使悬挂在长绳上的小球偏离平衡位置一个很小的角度,然后放开它,同时使另一个小球从静止开始由悬点自由下落。哪一个小球先到达第一个小球的平衡位置?7.图2-3是某简谐运动的振动图像,试根据图像回答下列问题。(1)该简谐运动的振幅、周期、频率各是多大? (2)从C点算起,到曲线上的哪一点,表示完成了一次全振动? (3)曲线上A、B、C、D、E、F、G、H各点中,
13、哪些点表示振子的动能最大,哪些点表示振子的势能最大?B 组1. 一个单摆完成 10 次全振动的时间是 40 s,摆球的质量为 0.2 kg,它振动到最大位移时距最低点的高度为 1.5 cm,它完成 10 次全振动回到最大位移时,距最低点的高度变为 1.2 cm。如果每完成 10 次全振动给它补充一次能量,使摆球回到原来的高度,在 200 s 内总共应补充多少能量? 2. 一个单摆在质量为 m1、半径为 R1 的星球上做周期为 T1 的简谐运动,在质量为 m2、半径为 R2 的星球上做周期为 T2 的简谐运动。求T1 与 T2 之比。3. 某同学用单摆测重力加速度。实验时改变摆长,测出几组摆长
14、l 和对应的周期 T 的数据,作出 l-T 2 图像,如图 2-4 所示。 (1)利用 A、B 两点的坐标可求得重力加速度 g,请写出重力加速度的表达式。 (2)本实验用 l-T2 图像计算重力加速度,是否可以消除因摆球质量分布不均匀而造成的 测量误差?请说明道理。4. 图 2-5 是一个弹簧振子的振动图像,试完成以下问题。 (1)写出该小球位移随时间变化的关系式。 (2)在第 2 s 末到第 3 s 末这段时间内,小球的加速度、速度、动能和弹性势能各是怎样 变化的? (3)该小球在第 100 s 时的位移是多少?路程是多少?5. 如图2-6甲,O点为单摆的固定悬点,将力传感器接在摆球与O点之
15、间。现将摆球拉到A点,释放摆球,摆球将在竖直面内的A、C之间来回摆动,其中B点为运动中的最低位置。图2-6乙表示细线对摆球的拉力大小F随时间t变化的曲线,图中t0为摆球从A点开始运动的时刻,g取10 m/s2。 (1)求单摆的振动周期和摆长。 (2)求摆球的质量。 (3)求摆球运动过程中的最大速度。6. 把一个筛子用四根弹簧支撑起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛,如图 2-7甲所示。该共振筛的共振曲线如图 2-7 乙所示。 已知增大电压,可使偏心轮转速提高,增加筛子质量,可增大筛子的固有周期。现在,在某 电压下偏心轮的转速是 54 r/min。为了使筛子的振幅增大,请提出两种方案。11学科网(北京)股份有限公司