(易)含参的-一元一次不等式.ppt

上传人:1595****071 文档编号:71843991 上传时间:2023-02-06 格式:PPT 页数:23 大小:470.50KB
返回 下载 相关 举报
(易)含参的-一元一次不等式.ppt_第1页
第1页 / 共23页
(易)含参的-一元一次不等式.ppt_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《(易)含参的-一元一次不等式.ppt》由会员分享,可在线阅读,更多相关《(易)含参的-一元一次不等式.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、含参数的含参数的一元一次不等式(组)一元一次不等式(组)()如果()如果 ab,那么那么 a+c b+c.()如果()如果 ab,并且并且 c0,那么那么 ac bc.()如果()如果 ab,并且并且 c一、知识点回顾:一、知识点回顾:(1)若若 a-6b-6,则,则 ab ()(2)如果如果-a-b,则则 ab ()(3)如果如果 2a-2 b,则则 a-b ()(4)如果如果 a ba c,则则 bc ()判断正误,正确的在括号里打判断正误,正确的在括号里打“”,错误的打错误的打“”理解运用理解运用一、解集对照法一、解集对照法例1.已知关于x不等式的取值范围是 1、如果关于x的不等式解集相

2、同,则a的值是 一、解集对照法一、解集对照法例2.如果不等式组的取值范围是()C 例3.关于x的不等式组的解集是则=_ -3 A 2、如果不等式组的取值范围是()3.若不等式组1方法总结:方法总结:解集对照法中,最关键的解集对照法中,最关键的在于在于“对对”,即在含字母的代,即在含字母的代数式与给出的解集之间建立对数式与给出的解集之间建立对应关系,从而确定字母的值或应关系,从而确定字母的值或取值范围取值范围.二、借助数轴法二、借助数轴法例4.已知不等式组 要使不等式组有解,k的取值范围是_要使不等式组无解,k的取值范围是_二、借助数轴法二、借助数轴法 4、已知不等式组无解(有解),求k的取值范

3、围例5:若不等式组只含有六个整数解-1,0,1,2,3和4,则a的取值范围为_ 6、若不等式组只含有六个整数解,则a的取值范围为_方法总结方法总结:把已知或能算出的解表示在把已知或能算出的解表示在数轴上数轴上,让带字母的解在数轴上让带字母的解在数轴上移动移动,观察何时满足题目要求观察何时满足题目要求,尤尤其注意临界点能否取到其注意临界点能否取到.例6:如果关于x的方程3x+ax+4的解是非负数,求a的取值范围。三、不等式与方程(组)结合的应用三、不等式与方程(组)结合的应用例例6:如果关于:如果关于x的方程的方程3x+ax+4的解是非负数,的解是非负数,求求a的取值范围。的取值范围。X是非负数

4、是非负数三、不等式与方程(组)结合的应用三、不等式与方程(组)结合的应用三、不等式与方程三、不等式与方程结三、不等式与方结三、不等式与方程结合的应用程结合的应用合的应用合的应用 7、已知方程求a的取值范围的解适合不等式三、不等式与方程三、不等式与方程结三、不等式与方结三、不等式与方程结合的应用程结合的应用合的应用合的应用 例7:已知方程组A三、不等式与方程三、不等式与方程结三、不等式与方结三、不等式与方程结合的应用程结合的应用合的应用合的应用 8、若关于二元一次方程组、若关于二元一次方程组求a的取值范围方法总结方法总结:把方程或方程组的解用字母把方程或方程组的解用字母表示出来表示出来,将解代入到已知条件将解代入到已知条件中中,再解不等式再解不等式,即可求出字母的即可求出字母的取值范围。取值范围。注意:解方程或方程注意:解方程或方程组时,将字母看成已知数求解。组时,将字母看成已知数求解。谈谈你这节课的收获?谈谈你这节课的收获?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁