微积分入门--课件.ppt

上传人:飞****2 文档编号:71805518 上传时间:2023-02-06 格式:PPT 页数:98 大小:3.81MB
返回 下载 相关 举报
微积分入门--课件.ppt_第1页
第1页 / 共98页
微积分入门--课件.ppt_第2页
第2页 / 共98页
点击查看更多>>
资源描述

《微积分入门--课件.ppt》由会员分享,可在线阅读,更多相关《微积分入门--课件.ppt(98页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 定积分第一节 定积分的概念与性质1ppt课件abxyo实例实例1 1 (求曲边梯形的面积)(求曲边梯形的面积)一、问题的提出2ppt课件abxyoabxyo用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积(四个小矩形)(四个小矩形)(九个小矩形)(九个小矩形)3ppt课件曲边梯形如图所示,曲边梯形如图所示,4ppt课件曲边梯形面积的近似值为曲边梯形面积的近似值为曲边梯形面积为曲边梯形面积为5ppt课件实例实例2 2 (求变速直线运动的路程)(求变速直线运动的路程)思路思路:把整段时间分割成

2、若干小段,每小段上:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值分过程求得路程的精确值6ppt课件(1)分割)分割部分路程值部分路程值某时刻的速度某时刻的速度(2)求和)求和(3)取极限)取极限路程的精确值路程的精确值7ppt课件二、定积分的定义定义定义8ppt课件被被积积函函数数被被积积表表达达式式积积分分变变量量记为记为积分上限积分上限积分下限积分下限积分和积分和9ppt课件注意:注意:10ppt课件定理定理1 1定理定

3、理2 2三、存在定理11ppt课件曲边梯形的面积曲边梯形的面积曲边梯形的面积曲边梯形的面积的负值的负值四、定积分的几何意义12ppt课件几何意义:几何意义:13ppt课件例例1 1 利用定义计算定积分利用定义计算定积分解解14ppt课件15ppt课件五、定积分 的性质16ppt课件证证(此性质可以推广到有限多个函数作和的情况)(此性质可以推广到有限多个函数作和的情况)性质性质1 117ppt课件证证性质性质2 218ppt课件补充补充:不论:不论 的相对位置如何的相对位置如何,上式总成立上式总成立.例例 若若(定积分对于积分区间具有可加性)(定积分对于积分区间具有可加性)则则性质性质3 319

4、ppt课件证证性质性质4 4性质性质5 520ppt课件解解令令于是于是可以直接作出答案可以直接作出答案21ppt课件性质性质5 5的推论:的推论:证证(1)22ppt课件证证说明:说明:可积性是显然的可积性是显然的.性质性质5 5的推论:的推论:(2)23ppt课件证证(此性质可用于估计积分值的大致范围)(此性质可用于估计积分值的大致范围)性质性质6 6曲边梯形的面积曲边梯形的面积 夹在两个矩形之间夹在两个矩形之间24ppt课件解解例例2 不计算定积分不计算定积分 估计估计 的大小的大小25ppt课件证证由闭区间上连续函数的介值定理知由闭区间上连续函数的介值定理知性质性质7 7(Th5.1

5、Th5.1 定积分第一中值定理)定积分第一中值定理)积分中值公式积分中值公式26ppt课件使使即即积分中值公式的几何解释:积分中值公式的几何解释:27ppt课件Th5.2(Th5.2(推广的积分第一中值定理)推广的积分第一中值定理)28ppt课件考察定积分考察定积分记记积分上限函数积分上限函数六、积分上限函数及其导数29ppt课件证证30ppt课件由积分中值定理得由积分中值定理得31ppt课件计算下列导数计算下列导数32ppt课件补充补充证证33ppt课件例例1 1 求求解解分析:分析:这是这是 型不定式,应用洛必达法则型不定式,应用洛必达法则.34ppt课件定理定理2 2(原函数存在定理)(

6、原函数存在定理)定理的重要意义:定理的重要意义:(1)肯定了连续函数的原函数是存在的)肯定了连续函数的原函数是存在的.(2)初步揭示了积分学中的定积分与原函数之)初步揭示了积分学中的定积分与原函数之间的联系间的联系.35ppt课件定理定理 3 3(微积分基本公式)(微积分基本公式)证证七 牛顿莱布尼茨公式36ppt课件令令令令牛顿牛顿莱布尼茨公式莱布尼茨公式37ppt课件微积分基本公式表明:微积分基本公式表明:注意注意求定积分问题转化为求原函数的问题求定积分问题转化为求原函数的问题.38ppt课件例例4 4 求求 原式原式例例5 5 设设 ,求求 .解解解解39ppt课件例例6 6 求求 解解

7、由图形可知由图形可知40ppt课件则有1.微积分基本公式积分中值定理微分中值定理牛顿 莱布尼茨公式41ppt课件定理定理八、换元公式42ppt课件证证43ppt课件44ppt课件应用换元公式时应注意应用换元公式时应注意:(1)(2)45ppt课件例例1 1 计算计算例例2 2 计算计算46ppt课件例例1 1 计算计算解凑微分是第一类换元积分法,特点是不要明显地换元,也就不要更换积分的上下限。47ppt课件例例2 2 计算计算解解原式原式48ppt课件例例3 3 计算计算解解49ppt课件三角代换和根式代换50ppt课件例例4 4 计算计算解解令令原式原式明显换元51ppt课件证证52ppt课

8、件53ppt课件奇函数奇函数例例6 6 计算计算解解原式原式偶函数偶函数单位圆的面积单位圆的面积54ppt课件总结:总结:1、定积分公式、定积分公式2、定积分计算方法(直接代入,凑微分,、定积分计算方法(直接代入,凑微分,根式代换,三角代换)根式代换,三角代换)3、根式和三角代换为明显的代换,所以换、根式和三角代换为明显的代换,所以换元要换上下限元要换上下限4、介绍了积分上限函数介绍了积分上限函数5、积分上限函数是原函数、积分上限函数是原函数6、计算上限函数的导数、计算上限函数的导数55ppt课件证证(1)设)设56ppt课件57ppt课件(2)由此计算由此计算设设58ppt课件59ppt课件

9、定积分的分部积分公式定积分的分部积分公式推导推导九、分部积分公式60ppt课件例例 计算计算解解61ppt课件例例2 2 计算计算解解令令则则62ppt课件例例3 3 计算计算解解例例4 4 计算计算63ppt课件例例5 5 计算计算解解64ppt课件第四节 广义积分一、无穷限的广义积分65ppt课件66ppt课件67ppt课件例例1 1 计算广义积分计算广义积分解解简记为68ppt课件例例1 1 计算广义积分计算广义积分解解69ppt课件证证70ppt课件71ppt课件72ppt课件73ppt课件74ppt课件75ppt课件76ppt课件回顾回顾 曲边梯形求面积的问题曲边梯形求面积的问题第五

10、节、定积分应用ab xyo77ppt课件1、几何上的应用78ppt课件面积79ppt课件ab xyo面面积积元元素素80ppt课件一、平面图形的面积一、平面图形的面积1.直角坐标情形直角坐标情形设曲线与直线及 x 轴所围曲则边梯形面积为 A,右图所示图形,面积元素为81ppt课件曲边梯形的面积曲边梯形的面积曲边梯形的面积曲边梯形的面积82ppt课件c有时也会选 y 为积分变量83ppt课件解解(1)作图)作图(2)求出两曲线的交点)求出两曲线的交点(3)选选 为积分变量为积分变量(4)代公式)代公式84ppt课件解解两曲线的交点两曲线的交点选选 为积分变量为积分变量85ppt课件解题步骤:解题

11、步骤:(2)求出交点;(3)选择合适的积分变量,确定积分区间,计算。(1)画出草图;86ppt课件例例3.求椭圆解解:利用对称性,所围图形的面积.有利用椭圆的参数方程应用定积分换元法得当 a=b 时得圆面积公式87ppt课件二、立体体积二、立体体积设所给立体垂直于x 轴的截面面积为A(x),则对应于小区间的体积元素为因此所求立体体积为上连续,1.已知平行截面面积函数的立体体积已知平行截面面积函数的立体体积88ppt课件例例1.一平面经过半径为R 的圆柱体的底圆中心,并与底面交成 角,解解:如图所示取坐标系,则圆的方程为垂直于x 轴 的截面是直角三角形,其面积为利用对称性计算该平面截圆柱体所得立

12、体的体积.89ppt课件思考思考:可否选择 y 作积分变量?此时截面面积函数是什么?如何用定积分表示体积?提示提示:90ppt课件 旋转体旋转体就是由一个平面图形绕这平面内就是由一个平面图形绕这平面内一条直线旋转一周而成的立体这直线叫做一条直线旋转一周而成的立体这直线叫做旋转轴旋转轴圆柱圆柱圆锥圆锥圆台圆台旋转体的体积91ppt课件当考虑连续曲线段轴旋转一周围成的立体体积时,有当考虑连续曲线段绕 y 轴旋转一周围成的立体体积时,有2.旋转体的体积旋转体的体积92ppt课件xyo旋转体的体积为旋转体的体积为93ppt课件94ppt课件95ppt课件例例1.计算由椭圆所围图形绕 x 轴旋转而转而成的椭球体的体积.解解:利用直角坐标方程则(利用对称性)96ppt课件解解98ppt课件

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁