《初二数学期中上册知识点.docx》由会员分享,可在线阅读,更多相关《初二数学期中上册知识点.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文本为Word版本,下载可任意编辑初二数学期中上册知识点 虽然在学习的过程中会遇到许多不顺心的事,但古人说得好吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。没有失败和挫折的人,是永远不会成功的。本篇文章是为您整理的初二数学期中上册知识点,供大家借鉴。 1.初二数学期中上册知识点 等腰三角形判定 中线 1、等腰三角形底边上的中线垂直底边,平分顶角; 2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。 1、两边上中线相等的三角形是等腰三角形; 2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形 角平分线 1、等腰三
2、角形顶角平分线垂直平分底边; 2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。 1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形; 2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。 高线 1、等腰三角形底边上的高平分顶角、平分底边; 2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。 1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形; 2、有两条高相等的三角形是等腰三角形。 2.初二数学期中上册知识点 一、函数: 一般地,在某一变化过程中有两个变量x与y,如果给定一个x值
3、,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。 二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。 三、函数的三种表示法及其优缺点 (1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图象法 用图象表示函数关系的方法叫做图象法。 四、由函数关系式画其图像的一
4、般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。 特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。 2、一次函数的图像:所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经
5、过原点(0,0)的直线。 3.初二数学期中上册知识点 角形 一、知识框架: 知识概念: 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。 5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 7、多边形:在平面
6、内,由一些线段首尾顺次相接组成的图形叫做多边形。 8、多边形的内角:多边形相邻两边组成的角叫做它的内角。 9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。 12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面, 13、公式与性质: 三角形的内角和:三角形的内角和为180 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不
7、相邻的内角。 多边形内角和公式:边形的内角和等于180 多边形的外角和:多边形的外角和为360。 多边形对角线的条数: 从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。 边形共有条对角线。 4.初二数学期中上册知识点 轴对称 一、知识框架: 二、知识概念: 1、基本概念: 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。 两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 等腰三角形:有两条边相等
8、的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。 等边三角形:三条边都相等的三角形叫做等边三角形。 2、基本性质: 对称的性质: 不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。 对称的图形都全等。 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等。 与一条线段两个端点距离相等的点在这条线段的垂直平分线上。 5.初二数学期中上册知识点 整式的乘除与因式分解 1、同底数幂的乘法 同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下
9、几点: 法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式; 指数是1时,不要误以为没有指数; 不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; 当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数); 公式还可以逆用:(m、n均为正整数) 2、幂的乘方与积的乘方 1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。 2、底数有负号时,运算时要注意,底数是a与(a)时不是同底,但可以利用乘方法则化成同底,如将(a)
10、3化成a3。 3、底数有时形式不同,但可以化成相同。 4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。 6、幂的乘方与积乘方法则均可逆向运用。 3、整式的乘法 (1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。 单项式乘法法则在运用时要注意以下几点: 积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆; 相同字母相乘,
11、运用同底数的乘法法则; 只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; 单项式乘法法则对于三个以上的单项式相乘同样适用; 单项式乘以单项式,结果仍是一个单项式。 (2)单项式与多项式相乘 单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 单项式与多项式相乘时要注意以下几点: 单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; 运算时要注意积的符号,多项式的每一项都包括它前面的符号; 在混合运算时,要注意运算顺序。 (3)多项式与多项式相乘 多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 多项式与多项式相乘时要注意以下几点: 多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; 多项式相乘的结果应注意合并同类项; 对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得。第 10 页 共 10 页