《固体物理复习1-4.ppt》由会员分享,可在线阅读,更多相关《固体物理复习1-4.ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章第一章 晶体结构晶体结构一、几种典型的晶体结构一、几种典型的晶体结构密排六方结构(密排六方结构(hcp):ABABAB 如:如:Mg,Zn,Cd 面心立方结构(面心立方结构(fcc):ABCABC 如:如:Ca,Cu,Al 体心立方结构(体心立方结构(bcc):如:):如:Li,Na,K,Ba 简单立方结构(简单立方结构(sc)金刚石结构:如:金刚石,金刚石结构:如:金刚石,Si,Ge NaCl结构:如:结构:如:NaCl,LiF,KBr CsCl结构:如:结构:如:CsCl,CsBr,CsI 闪锌矿结构:如:闪锌矿结构:如:ZnS,CdS,GaAs,-SiC 二、晶格的周期性二、晶格的
2、周期性晶格晶格 等同点系等同点系 空间点阵空间点阵 数学抽象数学抽象任取任取一点一点格点(或阵点)格点(或阵点)基元:一个格点所代表的物理实体基元:一个格点所代表的物理实体格矢:格矢:Rll1a1+l2a2+l3a3基矢:基矢:a1,a2,a3原胞:原胞:1.空间点阵原胞:空间点阵中最小的重复单元,只含空间点阵原胞:空间点阵中最小的重复单元,只含有一个格点,对于同一空间点阵,原胞的体积相等。有一个格点,对于同一空间点阵,原胞的体积相等。2.晶格原胞:晶格晶格原胞:晶格最小最小的重复单元的重复单元3.WignerSeitz原胞:由原胞:由各格矢的垂直平分面各格矢的垂直平分面所围成的所围成的 包含
3、原点在内的包含原点在内的最小最小封闭体积封闭体积晶格的分类:晶格的分类:简单晶格:每个晶格原胞中只含有简单晶格:每个晶格原胞中只含有一个原子一个原子,即晶格中,即晶格中 所有原子在所有原子在化学、物理和几何环境完全等同化学、物理和几何环境完全等同 (如:(如:Na、Cu、Al等晶格)等晶格)。复式晶格:每个晶格原胞中含有两个或两个以上的原子,复式晶格:每个晶格原胞中含有两个或两个以上的原子,即晶格中有两种或两种以上的等同原子(或即晶格中有两种或两种以上的等同原子(或 离子)。如:离子)。如:Zn、Mg、金刚石、金刚石、NaCl等晶格。等晶格。倒倒格矢:格矢:Gnn1b1+n2b2n3b3,n1
4、,n2,n3整数整数倒格子原胞体积:倒格子原胞体积:b=b1b2 b3和和h整数整数格常数为格常数为a的的面心立方的倒格子是格常数为面心立方的倒格子是格常数为4/a的的体心立方;体心立方;格常数为格常数为a的的体心立方的倒格子是格常数为体心立方的倒格子是格常数为4/a的的面心立方。面心立方。三、倒格子三、倒格子倒格子基矢的定义倒格子基矢的定义:aibj2ij,i,j=1,2,3四、晶体的宏观对称性,点群四、晶体的宏观对称性,点群 32个点群,只要求一般了解即可个点群,只要求一般了解即可五、晶系和五、晶系和Bravais格子格子晶胞:既能反映晶格的周期性又能体现晶体宏观对称晶胞:既能反映晶格的周
5、期性又能体现晶体宏观对称 性特征的最小重复单元性特征的最小重复单元。(注意与原胞的区别注意与原胞的区别)晶胞的坐标系:晶胞的坐标系:a,b,c晶胞参量:晶胞参量:a,b,c,晶胞的基矢晶胞的基矢坐标系中的线指数坐标系中的线指数lmn和面指数和面指数(hkl)七个晶系:根据晶体的对称性特征分类七个晶系:根据晶体的对称性特征分类14种种Bravais格子格子(了解)(了解)立方晶系的基矢:立方晶系的基矢:fcc:bcc:本章要求:本章要求:v 几种简单的晶体结构;几种简单的晶体结构;v 掌握关于晶体的基本概念(晶格、空间点阵、基矢、掌握关于晶体的基本概念(晶格、空间点阵、基矢、原胞、格点、基元、简
6、单晶格和复式晶格等);原胞、格点、基元、简单晶格和复式晶格等);v 倒易空间的概念,倒格子基矢的定义,倒格子与正格倒易空间的概念,倒格子基矢的定义,倒格子与正格 子的关系,要求给定一组正格子基矢,会求出相应的子的关系,要求给定一组正格子基矢,会求出相应的 倒格子基矢;倒格子基矢;v 晶胞的概念,晶胞的基矢坐标系,晶胞参量;晶胞的概念,晶胞的基矢坐标系,晶胞参量;v 晶系和晶系和Bravais格子;格子;v 格常数为格常数为a的面心立方的倒格子是格常数为的面心立方的倒格子是格常数为4/a的体的体心心 立方,反之亦然。立方,反之亦然。v 立方晶系的基矢。立方晶系的基矢。第二章第二章 晶体的结合晶体
7、的结合一、晶体结合的基本类型及主要特征一、晶体结合的基本类型及主要特征二、晶体中粒子的相互作用二、晶体中粒子的相互作用双双粒子模型:粒子模型:晶体的互作用能:晶体的互作用能:由平衡条件由平衡条件求出求出r0和和U0结合能:结合能:W U0 0结合能的物理意义:把晶体拆分成彼此没有相互作用的原结合能的物理意义:把晶体拆分成彼此没有相互作用的原 子、离子或分子时,外界所做的功。子、离子或分子时,外界所做的功。体积压缩模量体积压缩模量体积压缩模量的物理意义:产生单位相对体积压缩所需体积压缩模量的物理意义:产生单位相对体积压缩所需 的外加压强。的外加压强。晶体体积:晶体体积:为为体积因子,只与结构有关
8、体积因子,只与结构有关三、离子晶体的互作用能三、离子晶体的互作用能 为为Madelung const.,只与结构有关只与结构有关Madelung const.的的求法:中性组合法求法:中性组合法四、分子晶体的互作用能四、分子晶体的互作用能 LennardJones势势晶体互作用能晶体互作用能A12和和A6只与晶体结构有关只与晶体结构有关在在常压下,常压下,He即使当即使当T0时,也不能凝结成晶体,这时,也不能凝结成晶体,这是由于原子零点振动能的影响,是一个量子效应。是由于原子零点振动能的影响,是一个量子效应。五、共价结合的基本特征:方向性和饱和性五、共价结合的基本特征:方向性和饱和性六、共价键
9、与离子键之间的混合键六、共价键与离子键之间的混合键 当形成共价键的两个原子不是同种原子时,这种结当形成共价键的两个原子不是同种原子时,这种结合不是纯粹的共价结合,而是含有离子结合的成分。合不是纯粹的共价结合,而是含有离子结合的成分。双粒子模型用于离子晶体和分子晶体上是相当成功双粒子模型用于离子晶体和分子晶体上是相当成功的,这是由于在这两类晶体中,电子云的分布基本上是的,这是由于在这两类晶体中,电子云的分布基本上是球对称的,因而可以用球与球之间的相互作用来模拟。球对称的,因而可以用球与球之间的相互作用来模拟。v 掌握各种晶体结合类型的基本特征;掌握各种晶体结合类型的基本特征;v 给定晶体相互作用
10、能的形式,根据平衡条件、体积压缩给定晶体相互作用能的形式,根据平衡条件、体积压缩 模量的定义以及体积因子求出平衡时晶体中最近邻粒子模量的定义以及体积因子求出平衡时晶体中最近邻粒子 间的距离间的距离r0、相互作用能、相互作用能U0(或结合能或结合能W)和体积压和体积压 缩模量缩模量K的表达式。的表达式。v 离子晶体和分子晶体的互作用能,离子晶体和分子晶体的互作用能,Lennard-Jones 势,势,Madelung常数的求法。常数的求法。v 共价键与混合键。共价键与混合键。本章要求:本章要求:第三章第三章 晶格振动和晶体的热学性质晶格振动和晶体的热学性质一、晶格振动的运动方程,格波方程和色散关
11、系,格波一、晶格振动的运动方程,格波方程和色散关系,格波 的概念;的概念;二、光学波和声学波的物理图象二、光学波和声学波的物理图象光学波的物理图象:原胞内不同原子间基本上作相对振光学波的物理图象:原胞内不同原子间基本上作相对振 动,当动,当q0时,原胞内不同原子完时,原胞内不同原子完 全作反位相振动。全作反位相振动。声学波的物理图象:原胞基本上作为一个整体振动,当声学波的物理图象:原胞基本上作为一个整体振动,当 q0时,原胞内各原子的振动(包时,原胞内各原子的振动(包 括振幅和位相)完全相同。括振幅和位相)完全相同。三、布里渊区三、布里渊区 布里渊区边界面方程布里渊区边界面方程在在q空间中,空
12、间中,j(q)有如下性质:有如下性质:简约区就是倒易空间中的简约区就是倒易空间中的WignerSeitz原胞,每个原胞,每个布里渊区的体积均相等,都等于倒格子原胞的体积。布里渊区的体积均相等,都等于倒格子原胞的体积。源于晶格的周期性源于晶格的周期性源于时间反演对称性源于时间反演对称性布里渊区的几何作图法布里渊区的几何作图法立方晶系的简约区立方晶系的简约区简单立方晶格的简约区:由简单立方晶格的简约区:由6个个100面围成的简单立方体面围成的简单立方体面心立方晶格的简约区:由面心立方晶格的简约区:由8个个111面和面和6个个100面围成面围成 的十四面体的十四面体体心立方晶格的简约区:由体心立方晶
13、格的简约区:由12个个110面围成的正十二体面围成的正十二体四、周期性边界条件四、周期性边界条件(三维)(三维)简约区中波矢简约区中波矢q的取值总数的取值总数N晶体的原胞数晶体的原胞数晶格振动的格波总数晶格振动的格波总数dsN晶体的自由度数晶体的自由度数声学波:声学波:d 支;支;光学波:光学波:d(s-1)支支d:晶体的维数;:晶体的维数;s:每个原胞中的原子数:每个原胞中的原子数 1,2,3五、声子概念五、声子概念声子:晶格振动的能量量子声子:晶格振动的能量量子 ,是反映晶体中原子,是反映晶体中原子 集体运动状态的激发单元。声子只是一种准粒子,集体运动状态的激发单元。声子只是一种准粒子,它
14、不能脱离晶体而单独存在。声子与声子(或声它不能脱离晶体而单独存在。声子与声子(或声 子与其他粒子)的相互作用过程遵从能量守恒和子与其他粒子)的相互作用过程遵从能量守恒和 准动量守恒。准动量守恒。第第j种声子的能量本征值:种声子的能量本征值:一个典型声子能量:一个典型声子能量:在在一定温度下,第一定温度下,第j种种声子的统计平均能量为声子的统计平均能量为 声子是一种玻色子,在一定温度下,平均声子数声子是一种玻色子,在一定温度下,平均声子数按能量的分布遵从按能量的分布遵从BoseEinstein分布:分布:六、确定晶格振动谱的实验方法六、确定晶格振动谱的实验方法 利用中子或光子受声子的非弹性散射来
15、确定晶格振利用中子或光子受声子的非弹性散射来确定晶格振动谱。动谱。v 中子的非弹性散射:确定晶格振动谱最常见也是最中子的非弹性散射:确定晶格振动谱最常见也是最 有效的实验方法。有效的实验方法。v 可见光的非弹性散射:可见光的非弹性散射:Raman散射:可见光光子受光学声子的非弹性散射散射:可见光光子受光学声子的非弹性散射 Brillouin散射:可见光光子受声学声子的非弹性散射散射:可见光光子受声学声子的非弹性散射 局限性:只能确定简约区中心附近很小一部分区域的局限性:只能确定简约区中心附近很小一部分区域的 振动谱振动谱v X光的非弹性散射:缺点:光的非弹性散射:缺点:X光光子的能量太高,很难
16、光光子的能量太高,很难 精确测定散射前后光子能量的变化。精确测定散射前后光子能量的变化。七、晶格热容七、晶格热容晶体的零点能:晶体的零点能:与温度有关的振动能:与温度有关的振动能:(三维简单晶格)(三维简单晶格)g():):晶格振动模式密度;晶格振动模式密度;m:截止频率截止频率晶格振动的总能量:晶格振动的总能量:晶格热容:晶格热容:v 实验:常温下,实验:常温下,DulongPetit定律:定律:CV 6 cal/mol.K 低温下,低温下,T,C CV V;T0T0,CV T3 0v Einstein模型:模型:0const.Einstein温度:温度:d:晶体维数,晶体维数,N:晶体原胞
17、数晶体原胞数高温下:高温下:T E,CV 3R,与,与DulongPetit定律一致定律一致低温下:低温下:T D,CV 3R,与,与DulongPetit定律一致;定律一致;低温下:低温下:T D,声子的平均自由程主要取决于声声子的平均自由程主要取决于声 子与声子间的相互碰撞,声子的平均自由程与子与声子间的相互碰撞,声子的平均自由程与T成反比;成反比;在低温下,在低温下,T D,声子的平均自由程主要取决于声子声子的平均自由程主要取决于声子 与晶体中的杂质、缺陷及晶体边界等的碰撞。与晶体中的杂质、缺陷及晶体边界等的碰撞。v 会写出一维(简单晶格或复式晶格)晶体链晶格振动会写出一维(简单晶格或复
18、式晶格)晶体链晶格振动 的动力学方程,格波方程,并导出色散关系;的动力学方程,格波方程,并导出色散关系;v 掌握光学波与声学波的物理图象;掌握光学波与声学波的物理图象;v 布里渊区概念,布里渊区边界面方程,要求会画出二维布里渊区概念,布里渊区边界面方程,要求会画出二维 晶体的前几个布里渊区图形,立方晶体的简约区;晶体的前几个布里渊区图形,立方晶体的简约区;v 周期性边界条件,简约区中波矢的总数和晶格振动格波周期性边界条件,简约区中波矢的总数和晶格振动格波 的总数;的总数;v 声子的概念;声子的概念;v 确定晶格振动谱的实验方法、适用性及局限性。确定晶格振动谱的实验方法、适用性及局限性。本章要求
19、:本章要求:v 晶格振动的总能量、零点能、晶格振动的模式密度、截止晶格振动的总能量、零点能、晶格振动的模式密度、截止 频率和晶格热容量;频率和晶格热容量;v 晶格热容的实验结果(高温下:晶格热容的实验结果(高温下:Dulong-Petit定律,低温定律,低温 下:下:T,C CV V;T0,T0,CV T3);v 晶格热容的理论模型:晶格热容的理论模型:Einstein模型和模型和Debye模型模型(基本(基本 假设及模式密度、截止频率、特征温度、零点能等的计假设及模式密度、截止频率、特征温度、零点能等的计 算,晶格热容及其高温或低温极限);算,晶格热容及其高温或低温极限);v 模式密度的一般
20、表达式及特殊等频率面模式密度的求法;模式密度的一般表达式及特殊等频率面模式密度的求法;v 晶体的热膨胀和晶格热传导与晶体的非简谐振动有关;晶体的热膨胀和晶格热传导与晶体的非简谐振动有关;v 基本物理量的数量级(如简约区的宽度、一个典型声基本物理量的数量级(如简约区的宽度、一个典型声 子能量、子能量、Debye温度等)。温度等)。第四章第四章 晶体中的缺陷和扩散晶体中的缺陷和扩散一、晶格缺陷的基本类型一、晶格缺陷的基本类型二、热缺陷(空位、间隙原子和二、热缺陷(空位、间隙原子和Frenkel缺陷)缺陷)热缺陷:由于晶体中原子热振动能量的统计涨落所产生。热缺陷:由于晶体中原子热振动能量的统计涨落所
21、产生。v 热缺陷的平衡数目热缺陷的平衡数目空位的平衡数目:空位的平衡数目:间隙原子的平衡数目:间隙原子的平衡数目:Frenkel缺陷的平衡数目:缺陷的平衡数目:v 热缺陷的运动热缺陷的运动空位:空位:间隙原子:间隙原子:三、晶体中原子的扩散三、晶体中原子的扩散晶体中原子扩散的本质是原子无规的布朗运动晶体中原子扩散的本质是原子无规的布朗运动 产生一个空位所需的能量产生一个空位所需的能量u11eV,u1u2、uf,所以所以空位是晶体中主要的热缺陷。空位是晶体中主要的热缺陷。1.扩散的宏观规律扩散的宏观规律扩散第一定律:扩散第一定律:扩散第二定律:扩散第二定律:不不要求会求解扩散方程要求会求解扩散方
22、程扩散系数与温度的关系:扩散系数与温度的关系:Q是扩散的激活能,在研究原子的扩散过程中,激活能是扩散的激活能,在研究原子的扩散过程中,激活能是一个相当重要的物理量。是一个相当重要的物理量。2.扩散的微观机制扩散的微观机制v 空位机制:扩散原子通过与其周围的空位交换位置进空位机制:扩散原子通过与其周围的空位交换位置进 行扩散的行扩散的 主要适用:原子的自扩散以及替位式杂质或缺位式杂主要适用:原子的自扩散以及替位式杂质或缺位式杂 质的异扩散质的异扩散v 间隙原子机制:扩散原子以从一个间隙位置跳到另一间隙原子机制:扩散原子以从一个间隙位置跳到另一 个间隙位置的方式进行扩散的个间隙位置的方式进行扩散的
23、 主要主要适用:填隙式杂质的异扩散适用:填隙式杂质的异扩散 一般情况下,杂质原子在晶体中的异扩散系数大于一般情况下,杂质原子在晶体中的异扩散系数大于其自扩散系数。其自扩散系数。四、离子导电性四、离子导电性 离子晶体中的点缺陷带有电荷在外电场的作用下会离子晶体中的点缺陷带有电荷在外电场的作用下会发生定向迁移,产生宏观电流。发生定向迁移,产生宏观电流。离子导电率:离子导电率:Arrhenius关系:关系:Einstein关系:关系:五、位错五、位错v 位错的两种基本型:刃位错和螺位错位错的两种基本型:刃位错和螺位错v 位错的定义:位错的定义:Burgers矢量矢量b 0的线缺陷的线缺陷 对于刃位错
24、:对于刃位错:Burgers矢量垂直于位错线矢量垂直于位错线 对于螺位错:对于螺位错:Burgers矢量平行于位错线矢量平行于位错线v 位错密度:位错密度:N/S,即单位面积上的位错露头数即单位面积上的位错露头数v 位错的观察:化学腐蚀、缀饰、形貌照相、电镜观察位错的观察:化学腐蚀、缀饰、形貌照相、电镜观察v 位错的产生:晶体的制备与加工过程中引入位错位错的产生:晶体的制备与加工过程中引入位错v 位错的增殖:位错的增殖:L型位错源和型位错源和U型位错源型位错源 金属中位错的存在是造成金属的强度远低于其理论金属中位错的存在是造成金属的强度远低于其理论值的最主要原因值的最主要原因本章要求:本章要求
25、:v 晶格缺陷的基本类型(点缺陷、线缺陷和面缺陷等)晶格缺陷的基本类型(点缺陷、线缺陷和面缺陷等);v 热缺陷、热缺陷的平衡数目及热缺陷的运动;热缺陷、热缺陷的平衡数目及热缺陷的运动;v 晶体中原子的扩散(本质:原子无规的布朗运动),晶体中原子的扩散(本质:原子无规的布朗运动),扩散系数的测定、扩散系数与温度的关系,扩散的微扩散系数的测定、扩散系数与温度的关系,扩散的微 观机制(空位机制和间隙原子机制)及主要适用范围;观机制(空位机制和间隙原子机制)及主要适用范围;v 离子导电性;离子导电性;v 位错(刃位错和螺位错),位错的定义,位错的滑位错(刃位错和螺位错),位错的定义,位错的滑 移,位错密度,位错的产生与增殖,位错与金属强度移,位错密度,位错的产生与增殖,位错与金属强度 的关系。的关系。v 基本物理量的数量级(空位、间隙原子和基本物理量的数量级(空位、间隙原子和Frenkel缺陷缺陷 的形成能,一般情况下晶体中主要的热缺陷)。的形成能,一般情况下晶体中主要的热缺陷)。