三角形五心性质-精品文档资料整理.docx

上传人:安*** 文档编号:71039413 上传时间:2023-01-31 格式:DOCX 页数:6 大小:92.79KB
返回 下载 相关 举报
三角形五心性质-精品文档资料整理.docx_第1页
第1页 / 共6页
三角形五心性质-精品文档资料整理.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《三角形五心性质-精品文档资料整理.docx》由会员分享,可在线阅读,更多相关《三角形五心性质-精品文档资料整理.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、三角形五心性质三角形的五心定理一、三角形五心定义内心是三角形的三内角平分线交点也是三角形内切圆的圆心重心是三角形的三条中线的交点.重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因此得名外心是三角形的三边的垂直平分线的交点.三角形外接圆的圆心.垂心是三角形的三条高的交点旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点.三角形的旁切圆与三角形的一边和其他两边的延长线相切的圆的圆心二、三角形五心性质内心:1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一.重心:1、重心到顶点的距离与重心到对边中点的距离之比为21.2、重心和三

2、角形3个顶点组成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.2、若O是ABC?的外心,则ABOC=2A为锐角或直角或ABOC-=23600A为钝角.4、外心到三顶点的距离相等.垂心:1、三角形三个顶点,三个垂足,垂心这7个点能够得到6个四点圆.2、三角形外心O、重心G和垂心H三点共线,且2:1:=GHOG.此直线称为三角形的欧拉线Eulerline3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍.4、垂心分每条高线的两部分乘积相等.OAOCOCOBOBOA?=?=?旁心:1、每个三角形都有三个旁心.2、旁心到三边的距离相等.注:三角形的中心:只要正三角形才有中心

3、,这时重心,内心,外心,垂心,四心合一。三、三角形五心性质证实垂心:已知:ABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F,求证:CFAB.证实:连接DEADB=AEB=90度A、B、D、E四点共圆ADE=ABEEAO=DACAEO=ADCAEOADCAE/AO=AD/ACEADOACACF=ADE=ABE又ABE+BAC=90度ACF+BAC=90度CFAB重心:三角形的重心到顶点的距离是它到对边中点距离的两倍.证实:如图:ABC中D为BC中点,E为AC中点,F为AB中点,G为ABC重心做BG中点H,GC中点IHI为GBC的中位线HI/BC,且2HI=BC同理:F

4、E是ABC中位线FE/BC,且2FE=BCFE/HI,且FE=HI四边形FHIE是平行四边形HG=GE又H为BG的中点HG=BHHG=BH=GE2GE=BG三角形的重心到顶点的距离是它到对边中点距离的两倍四、有关三角形五心的诗歌三角形五心歌重外垂内旁三角形有五颗心,重外垂内和旁心,五心性质很重要,认真把握莫记混重心三条中线定相交,交点位置真奇巧,交点命名为“重心,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵敏运用把握好外心三角形有六元素,三个内角有三边作三边的中垂线,三线相交共一点此点定义为外心,用它可作外接圆内心外心莫记混,内切外接是关键垂心三角形上作三高,三高必于垂心

5、交高线分割三角形,出现直角三对整,直角三角形有十二,构成六对类似形,四点共圆图中有,细心分析可找清.内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心,如此定义理当然五心性质别记混,做起题来真是好.五心的性质三角形的五心有很多重要性质,它们之间也有很密切的联络,如:1三角形的重心与三顶点的连线所构成的三个三角形面积相等;2三角形的外心到三顶点的距离相等;3三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;4三角形的内心、旁心到三边距离相等;5三角形的垂心是它垂足三角形的内心;或者讲,三角形的内心是它旁心三角

6、形的垂心;6三角形的外心是它的中点三角形的垂心;7三角形的重心也是它的中点三角形的重心;8三角形的中点三角形的外心也是其垂足三角形的外心9三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.下面是更为具体的性质:1、垂心三角形三边上的高的交点称为三角形的垂心。三角形垂心有下列有趣的性质:设ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H。性质1垂心H关于三边的对称点,均在ABC的外接圆上。性质2ABC中,有六组四点共圆,有三组(每组四个)类似的直角三角形,且AHHD=BHHE=CHHF。性质3H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心

7、组)。性质4ABC,ABH,BCH,ACH的外接圆是等圆。性质5在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/APtanB+AC/AQtanC=tanA+tanB+tanC。性质6三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。性质7设O,H分别为ABC的外心和垂心,则BAO=HAC,ABH=OBC,BCO=HCA。性质8锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。性质9锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。三角形的内切圆的圆心简称为三角形的内心,即三角形三个角平分

8、线的交点。内心有下列优美的性质:性质1设I为ABC的内心,则I为其内心的充要条件是:到ABC三边的距离相等。性质2设I为ABC的内心,则BIC=90+12A,类似地还有两式;反之亦然。性质3设I为ABC内一点,AI所在直线交ABC的外接圆于D。I为ABC内心的充要条件是ID=DB=DC。性质4设I为ABC的内心,BC=a,AC=b,AB=c,I在BC、AC、AB上的射影分别为D、E、F;内切圆半径为r,令p=(1/2)(a+b+c),则(1)SABC=pr;(2)r=2SABC/a+b+c;(3)AE=AF=p-a,BD=BF=p-b,CE=CD=p-c;(4)abcr=pAIBICI。性质5

9、三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若I为ABC的A平分线AD(D在ABC的外接圆上)上的点,且DI=DB,则I为ABC的内心。性质6设I为ABC的内心,BC=a,AC=b,AB=c,A的平分线交BC于K,交ABC的外接圆于D,则AI/KI=AD/DI=DI/DK=(b+c)/a。3、外心三角形的外接圆的圆心简称三角形的外心.即三角形三边中垂线的交点。外心有如下一系列优美性质:性质1三角形的外心到三顶点的距离相等,反之亦然。性质2设O为ABC的外心,则BOC=2A,或BOC=360-2A(还有两式)。性质3设三角形的三条边长,外接圆的半径、面积分别为a、

10、b、c,R、S,则R=abc/4S。性质4过ABC的外心O任作一直线与边AB、AC(或延长线)分别相交于P、Q两点,则AB/APsin2B+AC/AQsin2C=sin2A+sin2B+sin2C。性质5锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和。4、重心性质1设G为ABC的重心,ABC内的点Q在边BC、CA、AB边上的射影分别为D、E、F,则当Q与G重合时QDQEQF最大;反之亦然。性质2设G为ABC的重心,AG、BG、CG的延长线交ABC的三边于D、E、F,则SAGF=SBGD=SCGE;反之亦然。性质3设G为ABC的重心,则SABG=SBCG=SACG=(1/3)SABC;反之亦然。1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。2、每个三角形都有三个旁心。3、旁心到三边的距离相等。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁