《配电设备健康状态评价专家系统的设计与实现.docx》由会员分享,可在线阅读,更多相关《配电设备健康状态评价专家系统的设计与实现.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、配电设备健康状态评价专家系统的设计与实现配电设备健康状态评价专家系统的设计与实现郑惠俊,袁海文北京航空航天大学自动化科学与电气工程学院,北京100191摘要:由于我国配电设备量大面广,单纯依靠人力很难对所有配电设备健康状态做出合理的评价。为了实现对配电设备的在线评价,减轻相关人员的工作负担,在:/doczj/doc/0fa4b571580102020740be1e650e52ea5518ceea.网络开发平台上,设计并开发了配电设备健康状态评价专家系统软件;专家系统知识库在SQLServer数据库平台上开发,系统采用C#编程语言完成程序编写,通过引入模糊集理论和证据理论建立推理机制。专家系统界
2、面简洁易操作、使用方便,并对结果进行可视化显示。通过测试示例介绍专家系统工作流程,测试结果证实专家系统工作可靠。关键词:专家系统;配电设备;健康状态;模糊集理论;证据理论;评价系统配电设备健康状态研究是目前电网资产管理领域一个新的研究方向1。我国配电网具有设备数量宏大、网络覆盖面广的特点,固然单个资产的价值不高,但是整体价值庞大。由于配电设备数量宏大,所以仅仅依靠人员对所有设备的健康状态进行评价是不现实的,需要引入专家系统,实现对设备健康状态的自动评价。斯坦福大学于1965年设计了首个专家系统,但是在大约20年后专家系统才被引入到电力系统中2。尽管专家系统在电力系统中应用较晚,却得到了很广泛的
3、应用,尤其在故障诊断和规划与设计领域。文献3设计了一种基于直觉模糊的变压器油色谱分析故障诊断专家系统。文献4设计了一种继电保护检验标准化作业专家系统,系统通过规范有序的引导、控制和帮助,减少了现场人员的繁琐劳动,提高了工作效率。在配电网领域,文献5介绍了配电网线路故障的基于模型诊断方法,该方法克制了普通专家系统移植和维护困难的缺点,在实际应用中获得良好的效果。文中在电力系统已有专家系统使用经历的基础上,发挥互联网技术的优势,设计了一种在网络环境下进行工作的配电设备健康状态评价专家系统,根据模糊集理论、证据理论等设计了推理规则,实现了对配电设备的在线评测。1专家系统总体设计文中所述专家系统采用基
4、于规则的专家系统模型设计,专家系统整体框图如图1所示。图1专家系统框架图专家系统主要由3个核心部分组成:知识库、推理机和规则集。在3个核心部分以外,专家系统还包括2个辅助部分:数据库接口和终端界面。数据库接口负责为专家系统知识库和推理机提供数据信息,其功能主要包括数据选择、数据格式预处理以及数据缓存等。数据接口能够与配电网领域的数据库建立连接,或者与相应的传感器建立连接,以实现数据的获取;对获取到的数据进行一定的预处理,以使数据格式知足知识库和推理机使用的要求;数据缓存功能则使数据接口具有存储功能,对推理机和知识库暂时用不到的数据进行暂时的存储。2知识库设计2.1知识源选择专家系统的知识;一般
5、被分为4种:领域专家、终端用户、多个专家和参考文献6。前3种;均需要知识工程师与相关人员进行沟通获取,由于获取经过的两端均为人,因而存在着知识表述困难、知识表述不准确以及知识获取不完好或知识获取不正确等情况。最后一种获取方式则是从参考文献中获取,由于参考文献都是经过总结归纳编写的,对知识的表达较为准确,知识的获取者可以以完好地理解知识,因而从参考文献获取知识相较于从人获取知识有着知识易采集、易理解与易使用的优势。在配电领域,目前国家电网公司制定了大量的标准、导则以及试验规程,这些文件覆盖了电网领域绝大部分的状态评价,指导着电网的日常生产工作。除去国家电网公司制定的标准、导则以及试验规程以外,在
6、国际上,IEEE、IET等组织也制定了电网领域相关的国际标准。尽管配电领域拥有大量的标准、导则以及试验规程等文件,但是这些文件体系庞大,涉及运维、检修以及试验等方方面面,一线人员需要花费大量的精神去翻阅文件,造成工作效率的下降。文中针对此问题,选择配电领域的参考文献作为主要知识;,利用专家系统实现对参考文献知识的管理和利用,帮助相关人员给出评价对象的健康状态,提高工作效率。2.2知识库构造设计知识库的构造,需要首先研究知识库中存储的知识的特点。本专家系统主要的知识;是参考文献,通过研究电网公司的相关参考文献发现,参考文献中的知识已经经过了归纳总结,而且电网领域的标准、导则以及试验规程等大多已经
7、表格化,以方便使用者参阅,这种表格化的知识利于在数据库中进行管理,因而专家系统的知识库在数据库平台上进行设计,采用如表1所示的构造进行知识的存储。表1知识库知识存储表指标1指标n结论或方法D11D1nE1?Dm1DmnEm知识存储表采用指标结论或方法的方式存储知识,由于指标一般为一个区间,因而在实际的存储表中,一个指标需要存储其上限值和下限值,假如指标没有上限,则上限值空缺;假如指标没有下限,则下限值空缺;假如本指标能够为任何数值,则指标上下限值全部空缺。知识表在SQLServer2020数据库平台上建立,存储知识后的知识存储表如图2所示。图2配电网变压器知识存储表(部分)在图2中,“低代表指
8、标的下限,“高代表指标上限,能够看出表格中存在一些空格。“CH4/H2指标第一行数值,表示本条知识与“CH4/H2指标取值无关,第5行和第6行没有上限值,表示该条知识只要大于下限值即知足条件。3规则集规则集是专家系统推理经过中所使用的规则的集合,在本专家系统中,规则集包括模糊从属度计算函数和DS证据理论推理函数,这2个函数用C#语言编写,被封装为类供推理机调用。3.1模糊从属度计算函数考虑到实际情况下,参考文献给出的范围可能并不是很准确,尤其在范围的边界处,假如采用简单的IF-THEN匹配形式进行匹配推理,可能造成匹配的失败,得出错误的结论。因而在专家系统中引入模糊集理论,通过计算各指标的模糊
9、从属度,避免简单IF-THEN推理造成的错误结果。模糊从属度计算函数主要包含3个模糊函数:戒上型模糊函数U、戒下型模糊函数L和中间对称型模糊函数M。3个函数的详细表达式如下7:式中:aU代表指标上限,aL代表指标下限。bU和bL的计算方法如下式所示:式中:U和L是比例系数,详细取值能够根据专家系统的运行情况进行调整,本文所述专家系统U和L取值均为10%。模糊从属度计算函数的工作流程如图3所示。函数首先获取到边界值aU、aL和数据x,然后判定边界值aU和aL能否存在,假如不存在则直接输出1;假如存在则继续判定上界aU能否存在,假如不存在则用戒下型模糊函数L计算并且输出结果;如果上界存在则判定下界
10、能否存在,假如不存在则用戒上型模糊函数U计算结果并且输出;假如下界存在,则用中间对称型模糊函数M计算并输出结果。图3模糊从属度计算流程3.2DS证据理论推理函数DS证据理论能够处理由不知道引起的不确定性的推理8。由于在模糊从属度函数计算之后得到了各指标对结果的支持函数,而支持函数仅仅给出了指标对结果的从属性的大小,并不是一个确切的结果,因而引入DS证据理论作为推理方法。根据DS证据理论的合成规则,结合专家系统的模糊从属度矩阵的特点,DS证据理论的归一化常数K的计算方式如下9:各经历的所对应的指标融合函数:根据式(6)、(7),设计DS证据理论推理函数算法流程如图4所示。图4DS证据理论推理函数
11、算法流程首先推理机将计算好的模糊从属度函数矩阵作为输入量输入DS证据理论推理函数,推理函数先计算矩阵的行数和列数;之后使用一个双循环计算出归一化常数K;然后计算每个经历的指标融合函数E,最终输出融合函数数组。4推理机推理机负责知识的推理,是专家系统实现知识使用功能的重要组成部分10。本专家系统推理机的主要功能包括:根据设备信息通过数据接口获取评价所需数据、从知识存储表中获取推理所需知识、调用规则集中的规则进行推理以及将最终推理结果输出到客户界面。推理机的工作流程如图5所示。图5推理机工作流程首先,用户从图6所示专家系统主界面选择日期以及设备的编号,然后点击“诊断按键,系统根据日期和设备编号从数
12、据库中读取数据信息。图6专家系统主界面之后,系统从知识库中读取与设备相关的知识。由于不同设备的知识是不同的,因而在知识库中不同设备的知识存储于不同的知识表当中,系统需根据设备编号获取设备类型,然后根据设备类型寻找到相应设备的知识表,读取表中知识。接下来,系统将获取到的数据和知识通过循环的方式,调用模糊从属度计算函数计算所有知识的模糊从属度,并且存入模糊从属度的二维数组当中,构成矩阵。由于DS证据理论要求单指标的识别函数值和为111,因而推理机需要对构成的矩阵进行归一化处理,使每个指标对应的所有模糊函数值的和为1。完成归一化处理之后构成新的归一化矩阵,调用DS证据理论推理函数,将整个归一化矩阵输
13、入函数中,函数以一维数组的方式输出融合函数。最后推理机选取最大融合函数值,并且根据函数值在数组中的位置编号,从知识表中读取设备状态和处理意见进行输出。5应用实例本实例采用110kV油浸式变压器油色谱数据介绍系统的详细推理经过。Lagorejer判定法采用油浸式变压器油色谱的相关指标指示变压器的状态,实例以Lagorejer判定法作为知识库中知识。由于Lagorejer判定法共有31条12,限于篇幅,以前8条为例进行分析。表2部分Lagorejer判定法H2/(LL-1)总烃/(LL-1)CH4/H2/(LL-1)C2H2/(LL-1)CO/(LL-1)状态20020B32003014000.6
14、1400B42000.61400B52000.6200400B62000.6200400B7表2中,状态A表示变压器正常,状态B表示变压器处于中等严重故障状态,17表示变压器的7个劣化类型,状态详细描绘可查看参考文献。表3是变压器油色谱数据,将表3中数据与表2中判定法进行比照,发现全部不符合,即无法判定变压器状态。表3110kV油浸式变压器油色谱数据气体H2/(LL-1)总烃/(LL-1)CH4/H2/(LL-1)C2H2/(LL-1)CO/(LL-1)含量2023200.6198405根据推理机的算法进行分析,计算各指标模糊从属度,得到表4。对表4中的模糊从属度进行归一化处理,计算结果如表5
15、所示。用DS证据理论推理函数计算表5中数据,得到融合函数数组如表6所示。表4各指标模糊从属度计算结果H2总烃CH4/H2C2H2CO0.90.333110.87510.33301110.33310110.3331110.91110.8750.911110.910.83300.8750.910.83301表5归一化后模糊从属度H2总烃CH4/H2C2H2CO0.120.0620.150.20.1150.1330.06200.20.1310.1330.0620.1500.1310.1330.0620.150.20.1310.120.1880.150.20.1150.120.1880.150.20.
16、1310.120.1880.12500.1150.120.1880.12500.131表6融合函数数组数组编号融合函数值数组编号融合函数值10.11550.3442060.394307040.15680从表6能够知道,推理机判定变压器的状态为B5。而当直接用数据与表2的判定法匹配时,由于H2含量大于200L/L,所以判定的结果应为B1、B2或B3。但是B1、B2或B3所对应的总烃含量都要求小于300L/L,而此时变压器的总烃含量却大于300L/L,因而出现无法判定变压器状态的情况。比照直接匹配法,模糊推理判定出了变压器的状态,所以推理机具有模糊决策的能力。以上经过为整个专家系统的计算推理经过,
17、而当用户在使用专家系统时,只需在图6所示的专家系统界面中通过点击“日历图标选取日期,然后选择设备编号,点击“诊断即可。系统会从数据库中自动选择离选取日期近期的数据作为评价数据用于评价设备的状态。并且在计算出结果后在“状态一栏中显示诊断结果,在“处理意见中显示系统提出的建议,在最下面则用表格的方式显示用于评价的数据,供用户查看设备的数据信息。6结论1)通过引入专家系统实现了配电设备健康状态的在线评价和实时监测,提高设备管理效率。2)专家系统从配电领域的参考文献中获取知识,利用模糊集理论和证据理论建立了推理机制,实现了对知识的推理使用。3)通过与传统IF-THEN匹配法的推理结果比照,表明本文所采
18、用的推理方式具有模糊推理能力,具有比IF-THEN推理法更好的推理效果。本文通过对专家系统在配电设备健康状态评价的研究,期望构建一个基于互联网平台的实时在线状态评价系统,实现对配电设备状态的实时监测和数据的采集获取,为今后应用大数据技术对我国配电网进行数据分析提供数据支撑。参考文献:1周莉梅,马钊,盛万兴.当代配电网健康指数理论最新研究进展J.供用电,2016,3(1):3-7.2韩祯祥,文福拴.电力系统中专家系统的应用综述J.电力系统自动化,1993(3):55-61.3MANIG,JEROMEJ.Intuitionisticfuzzyexpertsystembasedfaultdiagno
19、sisusingdissolvedgasanalysisforpowertransformerJ.Journalofelectricalengineering&technology,2021,9(6):2058-2064.4陈泾生,陈久林,郑海雁,等.继电保护检验标准化作业专家系统的研发和应用实践J.电力系统自动化,2020,33(16):108-111.5胡非,刘志刚,范福强,等.配电网线路故障的基于模型诊断方法J.电力系统自动化,2021,36(10):56-60.6蔡自兴,约翰.德尔金.高级专家系统M.北京:科学出版社,2021.7赵利.基于模糊模型的专家系统推理方法D.杭州:浙江大学,
20、2021.8张阳,何正友,林圣.一种基于DS证据理论的电网故障诊断方法J.继电器,2020,36(9):5-10.9韩德强,杨艺,韩崇昭.DS证据理论研究进展及相关问题讨论J.控制与决策,2021,29(1):1-11.10王亚南.专家系统中推理机制的研究与应用D.武汉:武汉理工大学,2006.11王力.基于DS证据理论的多传感器数据融合算法研究与应用D.太原:太原理工大学,2021.12操敦奎.变压器油色谱分析与故障诊断M.北京:中国电力出版社,2020.本文引用格式:郑惠俊,袁海文.配电设备健康状态评价专家系统的设计与实现J.应用科技,2017,44(4):55-59.ZHENGHuiju
21、n,YUANHaiwen.DesignandimplementationoftheexpertsystemforhealthstateevaluationofdistributionequipmentJ.Appliedscienceandtechnology,2017,44(4):55-59.DesignandimplementationoftheexpertsystemforhealthstateevaluationofdistributionequipmentZHENGHuijun,YUANHaiwenSchoolofAutomationScienceandElectricalEngine
22、ering,BeihangUniversity,Beijing100191,ChinaAbstract:Itisdifficulttomakeareasonableevaluationofthehealthstatusofallpowerdistributionequipmentbyrelyingsolelyonhumanresourcesbecauseofthelargeamountandwidecoverageareaofdistributionequipment.Inordertorealizetheonlineevaluationofdistributionequipmentandre
23、ducetheburdenofrelevantperson,theexpertsystemsoftwareforthehealthstateevaluationofpowerdistributionequipmentwasdesignedanddevelopedon:/doczj/doc/0fa4b571580102020740be1e650e52ea5518ceea.TheexpertsystemknowledgebaseisdevelopedontheServerSQLdatabaseplatformandtheprogramiscodedbyC#.Thereasoningmechanis
24、misbasedonfuzzysettheoryandevidencetheory.Theexpertsysteminterfaceissimpleandeasytooperateandtheresultisvisualized.Finally,itisproventhattheexpertsystemworksreliablythroughatestexampletoshowtheworkingprocessoftheexpertsystem.Keywords:expertsystem;distributionequipment;healthstate;fuzzysettheory;evid
25、encetheory;evaluationsystemDOI:10.11991/yykj.201607006网络出版地址::/doczj/doc/0fa4b571580102020740be1e650e52ea5518ceea./kcms/detail/23.1191.U.20170627.1619.002.收稿日期:2016-07-05.网络出版日期:2017-06-27.基金项目:国家电网公司科技项目(EPRIPDKJ(2021)2863).作者简介:郑惠俊(1990-),男,硕士研究生;袁海文(1968-),男,教授,博士.通信郑惠俊,E-mail:zhenghuijun:/doczj/doc/0fa4b571580102020740be1e650e52ea5518ceea.中图分类号:TM769文献标志码:A文章编号:1009-671X(2017)04-055-05