数学中的美(共14页).doc

上传人:飞****2 文档编号:7091079 上传时间:2022-02-18 格式:DOC 页数:13 大小:61.50KB
返回 下载 相关 举报
数学中的美(共14页).doc_第1页
第1页 / 共13页
数学中的美(共14页).doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《数学中的美(共14页).doc》由会员分享,可在线阅读,更多相关《数学中的美(共14页).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上数学建模读书报告-读数学中的美(吴振奎、吴旻 著) 五月中旬我阅读了吴振奎、吴旻两位先生所著的数学中的美一书,书中从简洁、和谐、奇异三个方面记述了数学的各个分支中的美。书中包含了从初等数学到高等数学的各方面知识。此书从哲学范畴出发,配以数学实例去解释数学潜在规律,探索运用美学原理指导数学创造、发现的途径,这对数学的教、学、研究均有裨益;另外,通过数学美学的研究,也就是对美学乃至哲学自身的一种丰富。此书中的数学思路新颖独特,读了之后对我的思维拓展极有裨益。其中很多内容对学习数学建模,领悟数学思想很有帮助。现录读书笔记如下,作为数学建模课程的结业作业。引言数学,如果正确的

2、看,不但拥有真理,而且也具有至高的美。 -罗素最有益的即是最美的 -苏格拉底数学能促进人们对美的特性:数值、比例、秩序等的认识。 -亚里士多德人们对美认识的几种模式:(1) 美是绝对观念在具体事物和现象中的表现或体现;(2) 美是有意向的,从主观上认识事物的结果;(3) 美是生活的本质同作为美的尺度的人相比,或者同他的事迹需要、同他的理想和关于美好生活观念相比较的结果;(4) 美是自然现象的自然属性.美的基本类别(客观来源)有二:自然美和社会美.美的社会形态也有二:艺术美和科学美(更确切的是科技美).艺术美是艺术家通过艺术形象再现生活中的美;科学美主要指理论美,其内涵是指结构美和公式美.黄金分

3、割的问题:1) 五角星里2) 建筑业3) 人体的黄金比例,人的肚脐是人体长的黄金分割点,而膝盖是人体肚脐以下部分的黄金分割点叶子在茎上的排布是呈螺旋状的,相邻的两片在与茎垂直的平面上的投影夹角是137度28分.犹太民族是个善于经营和智慧的民族,他们的经济学家巴特莱(Pateler)在总结事物祝辞时提出:正方形内切圆面积与正方形除去其内切圆后剩下的部分(四个角)面积比为78:22称为宇宙大法则.空气中的氮与氧之比为78:22:人的十个指头中利用率最高的只有两个:拇指与食指。人身体成分中水分与其它物质的比为78:22.任何特定的群体中,重要的因子通常只占少数,而不重要的因子则往往占少数.曾有人问科

4、学大师爱因斯坦(A.Einstein):何谓世界第八奇迹?爱因斯坦答道:符合成长.这个概念在经济活动中体现为”72法则”.在衡量收益公式中常数72是一个奇妙的数字:资本增加一倍的年数=72预期投资报酬率或 投资报酬率=72资本增加一年所需年数.美女的数量化标准:(1) 眼睛的宽度占眼睛所在面部位置的3/10;(2) 下巴长度占脸长的1/5;(3) 从眼珠到眼眉的距离是脸长的1/10;(4) 从正面端详,眼珠竖长占脸长的1/14;(5) 鼻部面积占脸整个面积的5%以下;(6) 嘴站嘴所在脸部宽度的50%.数学美的特征是什么?概括起来讲有简洁性、和谐性和奇异性.具体地有:简洁性:符号美,抽象美,统

5、一美;和谐美:和谐美,对称美,形式美;奇异美:奇异美,有限美,神秘美(朦胧美),常数每.一、 数学的简洁性数学简化了思维过程并使之更可靠. -弗赖伊(T.C.Fry)算学中所谓美的问题,是指一个难以解决的问题;而所谓美的解答,这是指对于困难和复杂问题的简单回答. -狄德罗宇宙之大、粒子之微、火箭之速、画工之巧、地球质变、生物之谜。日用之繁、无不可用数学表述. -华罗庚数学是上帝用来书写宇宙的文字. -伽利略数学中人们对于简洁的追求是永无止境的:建立公理体系人们试图找出最少的几条(摒弃任何多余的赘物);命题的证明人们力求严谨、简练(因而人们对某些命题证明不断地在改进);计算方法尽量便捷、明快(因

6、而人们不断地在探索计算方法的创新);数学拒绝繁冗.数学的简洁性在人们生活中屡见不鲜:钱币种类只须有一分、贰分、伍分、一角、二角、五角、医院、二元、五元、十元、,就可以简单的致富任何数目的款项.1. 符号美数学也是一种语言,且是现存的结构与内容的结构与内容方面最完美的语言.可以说,自然用这个语言讲话;造世主已用它说过话,而世界的保护者继续用它讲话. -C戴尔曼古代数学的漫长历程、今日数学的飞速发展;17世纪、18世纪欧洲数学的兴起、我国近千年数学发展的缓慢,这些在某种程度上也都归咎于数学符号的运用得是否得当,简练、方便的数学符号对于书写、运算、推理来讲,都是何等方便!我们还指出一点:数学符号的产

7、生也对数学发展的背景有着致密的联系,同一概念开始往往运用不同的符号表示,人们在使用过程中不断对其进行鉴别已确定优势(实用性、方便性、简洁性等)-这里面也蕴含一个审美的过程.著名的”六人相识问题”(拉姆塞(Ramsey)定理的特征):任何6个人中必可从中找出3人,使得他们要么彼此都相识,要么彼此都不相识.2. 抽象美就其本质而言,数学使抽象的;世纪上他的抽象比逻辑的抽象更高一阶. -G.Chrystal自然几乎不可能不对数学推理的美抱有偏爱. -C.N.杨数学虽不是研究现实事物的质,但任意事物必有量和形,这样两种事物如有相同的量和形,便可用相同的数学方法,因而数学必然也必须抽象.物理、化学、工程

8、乃至许多科学技术领域中的基本原理,都是用数学语言表达的.万有引力的思想、历史上早就有之,但只有当牛顿用精确的数学公式表达时,才成为科学中最重要、最著名的万有引力定律.爱因斯坦的广义相对论的产生与表达,也得益于黎曼(Rimann)几何所提供的数学框架和手段.抽象的两种含义:(1) 我们不容易想到(或意想不到)的;(2) 我们无法体验到(或与现实脱节)的.十七世纪,德国传教士鲍威特(J.Bouvet)从中国将易经和两幅术士们绘制的“易图”,带给了德国大数学家莱布尼茨,引起了莱布尼茨极大的兴趣.从而发明了二进制.1924年巴拿赫(S.Banach)和塔斯基(A.Tarski)证明了:三维空间中任何两

9、个几何体(从集合论的观点看)都组成相等(BanachTarski悖论).数学的抽象美害在于它可以无矛盾的按照严格数学推理,得到一些我们无论如何也无法想象的,或者是在现实空间认为是不可能的事实.3、统一美天得一以清,地得一以宁,万物得一以生. -古代道家语数学科学史统一的一体,其组织的活力依赖于其各部分之间的联系. -D.西尔伯特世界的统一在于它的物质性.宇宙的统一性表现在为宇宙的统一美.因而能解释宇宙统一的理论,即被认为是美的科学理论.比大格拉斯认为宇宙统一于”数”;狄摩克利特(Demokritos)认为宇宙统一于原子;柏拉图(Plato)认为宇宙统一于理念世界;中国古人认为宇宙通过阴阳五行,

10、统一于太一;笛卡尔认为宇宙统一于以太统一也是数学内涵的一个特征,古往今来人们一直都在探索它,并试图找到统一它们的办法.笛卡尔通过解析几何(即坐标方法)把几何学、代数学、逻辑学统一起来;高斯从曲率的观点把欧几里得几何、罗巴契夫斯基几何和黎曼(G.F.B.Riemann)几何统一起来了;克莱因(C.F.Klein)用变换群的观点统一了19世纪发展起来的各种几何学(该理论认为:不同的几何只不过是在相应的变换群下的一种不变量);拓扑学在分析学、代数学、几何学中的渗透,特别是在微分几何种种空间,产生了所谓拓扑空间的统一流形;统一也是数学家们永远追求的目标之一.数学中的联系绝非是一种巧合,而这恰恰反映了数

11、学的本质.布尔巴基(这是一大批优秀数学家组成的一个数学团体)的数学原理是迄今为止的全部数学,且使之趋于统一的大胆、优秀尝试.布尔巴基抽象出三种最基本的结构模型:代数结构:可以通过合成规则定义,反映集合中元素间的运算关系;序结构:由次序先后关系形成的结构;拓扑结构:给空间提供一个抽象的数字表示,反映集合各元素间亲疏关系.数学需要统一,而统一由历来为数学家们梦寐以求(对于其他学科也是如此).数学中的巧合很多:比如e与这两个看上去似乎风马牛不相及的常数(超越数)的表达式中,有很多令人不解的数字现象位数1 2 3 4 5 13 17 18 21 34 3 1 4 1 5 9 2 3 6 2 e 2 7

12、 1 8 2 9 2 3 6 2 .e和的十进制小数中,平均每个十位,发现一次重合.另外中会出现27 132,而e中又会有31 415等数字排列.圆锥曲线与物理或航天学中的三个宇宙速度问题有关:当物体运动分别达到该速度时,它们的轨迹便是相应的原准曲线(大自然同大数学家一样,总是以通等重要性把理论与应用统一起来):速 度第一宇宙速度第二宇宙速度第三宇宙速度轨 道椭 圆抛 物 线双 曲 线我们还知道:三种几何学(欧几里得几何、罗巴切夫斯基几何、黎曼几何)可以在高斯曲率的观点下统一成一种几何的三种不同情形.几何体系平行公理三角形内角和空间类型曲率k欧几里得几何过直线外一点最多可作一条直线与已知直线平

13、行=180度平面=0罗巴切布斯基几何过直线外一点至少可以做两条直线与已知直线不相交180度双曲线180度椭圆0二、 数学美的和谐所谓数学的和谐不仅是宇宙的特点,原子的特点,也是生命的特点,人的特点. -高尔基数学构造了人类智慧的最壮丽的纪念碑。 -T.Thomson宇宙概念常常在哲学家脑子里被表现为和谐-因为宇宙是和谐的.艺术的和谐人们可以”感觉到”,数学以致科学的和谐人们同样可以”感觉”,有时甚至是直觉.1. 和谐美我指的是本质的美,它来自自然各部分的和谐的秩序,并且纯智力都能够领悟它. -庞加莱数学的许多”艺术形式”是由精致的、”无噪声的”结果所组成的. -R.W.哈明美是和谐的.和谐性也

14、是数学美的特征之一.和谐即雅致、严谨或形式结构的无矛盾性.德国数学家康托尔创立了”集合论”,这是现代数学的基础,也是现代数学诞生的标志.1902年,英国数理逻辑学家罗素在数学原理中提出一个足以说明”集合论本身是自相矛盾的”例子-罗素悖论:试把集合分成两类:自己为自己元素者为甲类;自己不是自己元素者为乙类.这样,一个集合要么属于甲,要么属于乙,二者必居其一,且仅居其一.试问:乙类集合的全体属于哪一类?若乙属于甲,由甲的定义则有乙属于乙,这和乙属于甲矛盾;若乙属于乙,则仍以甲的定义应该有乙属于甲也矛盾.由于哲学观点不同,由此便产生了数学的几大派:逻辑主义学派(代表者罗素、怀德海等);直觉主义学派(

15、代表人物科罗内可(L.Kronecker)等);形式主义学派(代表人物希尔伯特等).人们意识到:如果说化学、物理学与生物学的结合,打开了生物学的大门的话,那么数学与物理学的结合将揭开微宏观世界的奥秘.2. 对称美对称是一个广阔的主题,在艺术和自然两方面都意义重大.数学则是他的根本. -H.Weyl虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离.因为美德主要形式就是秩序、匀称和确定性,这些正是数学所研究的原则. -亚里士多德自古以来,人们就已经讨论”对称原理”之一-左和右之间的对称.物理学定律一直显示左右之间完全对称.这种对称在量子力学”中可以形成一种守恒定律,即宇称守恒,他和左右对

16、称原理完全相同.英美几位物理学家日前提出的关于宇宙起源的新学说一鸣惊人:在五维空间按中存在我们的宇宙和另外一个”隐藏的宇宙(对称的宇宙).新理论是由美国普林斯顿大学、宾夕法尼亚大学和英国剑桥大学的物理学家们共同提出的.它们认为,我们宇宙和一个隐藏的宇宙共同镶嵌在五维空间中.在我们的宇宙早期,这两个宇宙发生了一次相撞事故,相撞产生的能量生成了我们宇宙中的物质和能量.3. 形式美只有音乐堪与数学媲美. -A.H.怀德海在形式数学中,每一步骤或为允许的,或为不正确的. -J.W.图恩毕达哥拉斯学派及其崇拜者还研究了多角数的美妙性质,比如他们发现:每个死角数是两个相继三角数之和;第n-1个三角数与第n

17、个k角数之和为第n个k+1角数;17世纪初,法国业余数学家费马在研究多角性质是提出猜想:每个正整数均可至多用三个三角数和、四个四角数和、k个k角数和表示.我们再来看看”幻方大王”弗里安逊(Frianson)制作的九阶幻方,堪称一绝:其性质:(1) 虚线框出的带圆圈的25个数字,恰好构成一个五阶幻方(幻和值为205);(2) 虚线框中没有圆圈上的数字恰好构成一个四阶幻方(幻和值为164);425868641844345026654451177782610126795321696346205273523313967556073655749413325179222715435159477530623

18、619136129376707256457137281680324838748118142440(3) 虚线框内数字(包括边界上的数字)全为奇数;框外数字全部为偶数;(4) 幻方中奇数的末位数字与水平轴线对称;偶数的末位数字业余水平轴线对称.三、 数学美的奇异性美在于奇特而令人惊异. -培根逻辑是贫乏的,而数学是最多产的母亲. -Anonymous奇异性是数学美的一个重要特性.奇异性包括两个方面内容:一是奇妙,二是变异.数学中不少结论巧妙无比,令人赞叹,正是因为这一点数学才有无穷的魅力.1. 奇异美在绘画与数学中,美又客观标准.画家讲究结构、线条、造型、肌理,而数学家则讲究真实、正确、新奇、普

19、遍、 -哈尔摩斯审美趣味和数学趣味是一致或相同. -贝尔数学中有许多变异现象,它们往往与人们预期的结果相反(有些则是人们没有认清而作出的错误判断,有些则是有悖于通常认识的结论),令人失望之余,也给了人们探索它们的动力(这是人类与生俱来的冲动所致).年轻的挪威数学家阿贝尔(N.H.Abel)证明了:一般五次和五次以上代数方程的结不能用公式给出.2. 有限美十进制技术的发明恐怕是科学史上最重要的成就. -H.Lebesque科学需要一种能够简练地、合乎逻辑地表达的语言,这种语言便是数学 -阿尔芬自然的终极秘密是用一种我们还不能阅读的语言书写,数学为这种原文提供了注释。 -O.G.Sutton世界是

20、无限的,宇宙是无限的,数学血液是无限的.唯一性在数学上有时是很重要的.比如整数的质因数分解,为了保证分解时的唯一性,人们不得不牺牲1这个按照定义原本属于质数的数,结果是:1既不是质数,也不是合数.这样一来,便保证了整数的质因数分解或表成质因数乘积时唯一.3. 神秘每(朦胧美)数学和诗歌都具有永恒的性质. -R.D.Carmichael哪里有数,哪里就有美. -Proclus数学关注抽象,却闭口不谈时空宇宙. -O.G.Sutton数学中有许多新奇、巧妙而又神秘的东西吸引着人们,这是数学的趣味魅力所在,它们“像甜蜜的笛声诱惑了如此众多的老鼠,跳进了数学的深河”.说文中对数的解释如下:一,性初太始

21、,道立于一,造分天地,化成万物;二,地之数也;三,天、地、人之道也;四,阴数也;五,五行也; 六,易之数也;诗,以其简练的语言,深邃的意境,给人以无穷的遐想.古人还以文字为游戏:如晚秋即景正念反念烟霞映水碧迢迢暮色求生一雁遥前岑落辉残晚照边城古树冷萧萧萧萧冷树古城边晚照残辉落岑前遥雁一声秋色暮迢迢碧水映霞烟有趣的是数学中也有回文质数,所谓回文质数就是指某数为质数,而该数的各数字倒过来写也是质数.卡特(Card)经计算发现:回文质数与无重回文质数个数如下表:位数两位三位四位五位“对”数4131026844. 常数美大哉言数. -姬昌整数的简单构成,若干世纪以来一直是使数学获得新生的源泉. -G.

22、D.Birkhoff数学中的某些常数,有着特殊魅力(因而也蕴藏着含着美感),比如黄金数0.618、斐波那契级数、圆周率、自然对数的底e、欧拉常数、肺根鲍姆(M.Feigenbaum)数4.669 201 609、物理中的大树、等等,它们不仅自身有着美妙的性质,还常常出现某些自然现象之中.狄拉克提出大数猜想:引力常数与宇宙年龄成反比.这种自然界告知我们的美妙信息(以数的形式告知),也许是宇宙永恒每得特征,它也奠定了粒子物理中大统一的理论基础.四、 美的扭曲数学并不应当纯粹建立在无矛盾性这一点上. -布尔巴基不美的数学是不允许继续存在的. -C.A.柯尔松康德关于美的命题是:美并不等于完善.数学有

23、着无比的功力,但有时又是软弱的.比如,人们想要用数学描述某些貌似简单的问题,往往反而非常困难.一些看来或许并不难解决的问题,往往会使人索求几个、甚至几十个世纪,比如费马大定理稽核难题的解决就是如此.五、 数学美学研究的意义任何科学领域都有美存在,只要你能用心挖掘到它的美,你就有可能攀登科学顶峰. -杨振宁数学的无穷无尽的诱人之处在于,它里面最棘手的悖论也能盛开出魅力的理论之花. -P.J.戴维数学是创造的艺术,因为数学创造了美好的新概念,数学家们像艺术家们一样地生活,一样的工作,一样地思索. -哈尔摩斯 刘富华 2006-5-28数学建模读书笔记读数学中的美 吴振奎、吴旻著教师:奚先学号:0班学号:姓名:刘富华 2006-5-28专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁