《海南省2023年教师资格之中学数学学科知识与教学能力能力提升试卷B卷附答案.doc》由会员分享,可在线阅读,更多相关《海南省2023年教师资格之中学数学学科知识与教学能力能力提升试卷B卷附答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、海南省海南省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力能力提升试卷能力能力提升试卷 B B 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、下列数学成就是中国著名数学成就的是()。A.B.C.D.【答案】C2、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】A3、患者,男,28 岁,患尿毒症晚期,拟接受肾移
2、植手术。介导超急性排斥反应的主要物质是A.细胞毒抗体B.细胞毒 T 细胞C.NK 细胞D.K 细胞E.抗 Rh 抗体【答案】A4、临床检测血清,尿和脑脊液中蛋白质含量的常用仪器设计原理是A.化学发光免疫测定原理B.电化学发光免疫测定原理C.酶免疫测定原理D.免疫浊度测定原理E.免疫荧光测定原理【答案】D5、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案】C6、患者,女,25 岁。因咳嗽、发热 7 天就诊。查体 T37.8,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于 20mm。该患者可能为A.对结核分枝
3、杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】C7、患者发热,巨脾,白细胞 2610A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】B8、已知两圆的半径分别为 2 和 3,圆心距为 5,则这两圆的位置关系是()。A.外离B.外切C.相交D.内切【答案】B9、我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。A.贾宪B.刘徽C.朱世杰D.秦九韶【答案】D10、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中常用的供氢体底物
4、A.叠氮钠B.邻苯二胺C.联苯胺D.硫酸胺E.过碘酸钠【答案】B11、男性,30 岁,黄疸,贫血 4 年,偶见酱油色尿。检验:红细胞 2.1510A.Coomb 试验B.血清免疫球蛋白测定C.Ham 试验D.尿隐血试验E.HBsAg【答案】C12、在现代免疫学中,免疫的概念是指A.排斥抗原性异物B.清除自身突变、衰老细胞的功能C.识别并清除从外环境中侵入的病原生物D.识别和排斥抗原性异物的功能E.机体抗感染而不患病或传染疾病【答案】D13、淋巴细胞活力的表示常用A.活细胞占总细胞的百分比B.活细胞浓度C.淋巴细胞浓度D.活细胞与总细胞的比值E.白细胞浓度【答案】A14、下列叙述哪项是正确的()
5、A.多发性骨髓瘤外周血可检到瘤细胞B.慢性粒细胞白血病外周血可检到幼稚粒细胞C.淋巴肉瘤细胞常在早期出现在外周血中D.急性粒细胞白血病外周血可找到原始粒细胞E.急性淋巴细胞白血病外周血中可找到涂抹细胞【答案】B15、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化脓性扁桃体。关于该病发病机制的特点下列叙述正确的是A.介导的抗体是 IgM、IgGB.介导的抗体包括 IgEC.补体、吞噬细胞和 NK 细胞参与D.肥大细胞脱颗粒E.无中性粒细胞浸润【答案】A16、与
6、巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112159flD.MCH3249pgE.MCHC0.320.36【答案】B17、骨髓病态造血最常出现于下列哪种疾病A.缺铁性贫血B.再生障碍性贫血C.骨髓增生异常综合征D.传染性单核细胞增多症E.地中海贫血【答案】C18、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】D19、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢
7、子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。其确诊的试验方法选用A.ELISA 法B.免疫扩散法C.免疫比浊法D.免疫印迹法E.化学发光法【答案】D20、血管损伤后伤口的缩小和愈合有赖于血小板的哪项功能A.黏附B.聚集C.收缩D.促凝E.释放【答案】C21、下列选项中,运算结果一定是无理数的是()A.有理数和无理数的和B.有理数与有理数的差C.无理数和无理数的和D.无理数与无理数的差【答案】A22、义务教育课程次标准(2011 年版)“四基”中“数学的基本思想”,主要是:数学抽象的思想;数学推理的思想;数学建模的思想。其中正确的是()。A.B.C.D.【答案】C23、贫血伴轻、
8、中度黄疸,肝功能试验均正常,最可能的诊断为是A.晚期肝硬化B.脾功能亢进C.溶血性贫血D.ITPE.急性白血病【答案】C24、免疫球蛋白含量按由多到少的顺序为A.IgG,IgM,IgD,IgE,IgAB.IgG,IgA,IgM,lgD,IgEC.lgG,IgD,lgA,IgE,IgMD.IgD,IgM,IgG,IgE,IgAE.IgG,IgM,IgD,IgA,IgE【答案】B25、粒细胞功能中具有共性的是()A.调理作用B.黏附作用C.吞噬作用D.杀菌作用E.中和作用【答案】C26、血小板第 4 因子(PFA.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】C27、型超敏反应根据发病机制
9、,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】C28、先天胸腺发育不良综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】A29、女性,26 岁,2 年前因头昏乏力、面色苍白就诊。粪便镜检找到钩虫卵,经驱虫及补充铁剂治疗,贫血无明显改善。近因症状加重而就诊。体检:中度贫血貌,肝、脾均肋下 2cm。检验:血红蛋白 85g/L,网织红细胞 5%;血清胆红素正常;骨髓检查示红系明显增生,粒红比例倒置,外铁(+),内铁正常。B 超显示胆石症。最可能的诊断是
10、A.缺铁性贫血B.铁幼粒细胞贫血C.溶血性贫血D.巨幼细胞贫血E.慢性炎症性贫血【答案】C30、出血时间测定狄克法正常参考范围是()A.26 分钟B.12 分钟C.27 分钟D.13 分钟E.24 分钟【答案】D31、患儿,男,7 岁。患血友病 5 年,多次使用因子进行治疗,近 2 个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV 阳性。选择符合 HIV 诊断的结果A.CD4T 细胞,CD8T 细胞,CD4/CD8 正常B.CD4 细胞,CD8T 细胞正常,CD4/CD8C.CD4T 细胞正常,CD8T 细胞,CD4/CD8D.CD4T 细胞,CD8T 细胞正常,CD4/CD8E
11、.CD4T 细胞正常,CD8T 细胞,CD4/CD8【答案】B32、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。其确诊的试验方法选用A.ELISA 法B.免疫扩散法C.免疫比浊法D.免疫印迹法E.化学发光法【答案】D33、再次免疫应答的主要抗体是A.IgGB.IgAC.IgMD.IgE.IgD【答案】A34、原发性肝细胞癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】A35、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。介导超急性排斥反应的主要物质是A.细胞毒抗体B.细胞毒
12、 T 细胞C.NK 细胞D.K 细胞E.抗 Rh 抗体【答案】A36、设 n 阶方阵 M 的秩 r(M)=rn,则它的 n 个行向量中().A.任意一个行向量均可由其他 r 个行向量线性表示B.任意 r 个行向量均可组成极大线性无关组C.任意 r 个行向量均线性无关D.必有 r 个行向量线性无关【答案】D37、数学的三个基本思想不包括()。A.建模B.抽象C.猜想D.推理【答案】C38、特发性血小板减少性紫癜的原因主要是A.DICB.遗传性血小板功能异常C.抗血小板自身抗体D.血小板第 3 因子缺乏E.血小板生成减少【答案】C39、人类的白细胞分化抗原是()A.Lyt 抗原B.Ly 抗原C.C
13、D 抗原D.HLA 抗原E.黏附分子【答案】C40、细胞核均匀着染荧光,有些核仁部位不着色,分裂期细胞染色体可被染色出现荧光的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】A41、临床有出血症状且 APTT 延长和 PT 正常可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】C42、有限小数与无限不循环小数的关系是()。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】A43、“矩形”和“菱形”概念之间的关系是()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B44、红细胞镰状变形试验用于诊断下列哪种疾病A.HbFB.HbSC.HbHD.H
14、bE.HbBArts【答案】B45、在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()A.1 个B.2 个C.3 个D.4 个【答案】C46、型超敏反应中最重要的细胞是A.B 细胞B.肥大细胞C.CD4D.嗜酸性粒细胞E.嗜碱性粒细胞【答案】C47、新课程标准将义务教育阶段的数学课程目标分为()。A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】B48、下列选项中,运算结果-定是无理数的是()。A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差【答案】A49、
15、关于过敏性紫癜正确的是A.多发于中老年人B.单纯过敏性紫癜好发于下肢、关节周围及臀部C.单纯过敏性紫癜常呈单侧分布D.关节型常发生于小关节E.不会影响肾脏【答案】B50、函数 f(x)=2x+3x 的零点所在的一个区间是()A.(-2,-l)B.(-1,0)C.(0,1)D.(1,2)【答案】B大题(共大题(共 1010 题)题)一、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一
16、只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m
17、与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。二、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出
18、几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利
19、用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。三、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。四、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作
20、 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】五、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)(
21、)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。六、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征
22、之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性七、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率
23、的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能
24、类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】八、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列式计算生:用零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾
25、呢看样子有必要引入一个新数来表示零下 3c。这时,零下 3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个
26、概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。九、在“有理数的加法”一节中,对于有理数加法的运算法
27、则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。一十、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。