《2023年教师资格之中学数学学科知识与教学能力能力提升试卷B卷附答案.doc》由会员分享,可在线阅读,更多相关《2023年教师资格之中学数学学科知识与教学能力能力提升试卷B卷附答案.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、20232023 年教师资格之中学数学学科知识与教学能力能年教师资格之中学数学学科知识与教学能力能力提升试卷力提升试卷 B B 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、激活凝血因子 X 的内源性激活途径一般开始于A.接触激活因子B.血小板聚集C.损伤组织因子D.磷脂酸粒表面阶段E.凝血酶原激活【答案】A2、红细胞形态偏小,中心淡染区扩大,受色浅淡,骨髓铁染色发现细胞内、外铁消失,为进一步确定贫血的病因,宜首选下列何项检查A.血清叶酸、维生素 BB.Ham 试验C.Coomb 试验D.铁代谢检查E.红细胞寿命测定【答案】D3、体内含铁最丰富的蛋白是A.白蛋白B.血红蛋白C.肌
2、红蛋白D.铁蛋白E.球蛋白【答案】D4、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。影响免疫浊度分析的重要因素A.温育系统故障B.伪浊度C.边缘效应D.携带污染E.比色系统故障【答案】B5、抛掷两粒正方体骰子(每个面上的点数分别为 1,2,.6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于 5 的概率为()A.5/36B.1/9C.1/12D.1/18【答案】B6、设 a,b 为非零向量,下列命题正确的是()A.a b 垂直于 aB.a b 平行于 aC.ab 平行于 aD.ab 垂直于 a【答案】A7、
3、DIC 诊断中血小板计数低于正常,PT 延长,Fbg 低于 2g/L。如果这三项中只有两项符合,必须补做哪一项纤溶指标A.3P 试验B.PRTC.血小板抗体D.因子E.血小板功能试验【答案】A8、已知向量 a 与 b 的夹角为/3,且|a|=1,|b|=2,若 m=a+b 与 n=2a-b 互相垂直,则的为()。A.-2B.-1C.1D.2【答案】D9、临床有出血症状且 APTT 正常和 PT 延长可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】B10、正常细胞性贫血首选的检查指标是A.网织红细胞B.血红蛋白C.血细胞比容D.红细胞体积分布宽度E.骨髓细胞形态【答案】A11、
4、下列属于获得性溶血性贫血的疾病是A.冷凝集素综合征B.珠蛋白生成障碍性贫血C.葡萄糖磷酸异构酶缺陷症D.遗传性椭圆形红细胞增多症E.遗传性口形红细胞增多症【答案】A12、义务教育数学课程标准(2011 年版)提出,“数感”感悟的对象是()。A.数与量、数量关系、口算B.数与量、数量关系、笔算C.数与量、数量关系、简便运算D.数与量、数量关系、运算结果估计【答案】D13、与向量 a=(2,3,1)垂直的平面是()。A.x-2y+z=3B.2x+y+3z=3C.2x+3y+z=3D.xy+z=3【答案】C14、女,20 岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断
5、为系统性红斑狼疮(SLE),下列可作为 SLE 特异性标志的自身抗体为A.抗 DNP 抗体和 ANAB.抗 dsDNA 抗体和抗 Sm 抗体C.抗 dsDNA 抗体和 ANAD.抗 ssDNA 抗体和抗 ANAE.抗 SSA 抗体和抗核蛋白抗体【答案】B15、数学抽象是数学的基本思想,是形成理性思维的()。A.重要基础B.重要方式C.工具D.基本手段【答案】A16、贫血伴轻、中度黄疸,肝功能试验均正常,最可能的诊断为是A.晚期肝硬化B.脾功能亢进C.溶血性贫血D.ITPE.急性白血病【答案】C17、义务教育课程次标准(2011 年版)“四基”中“数学的基本思想”,主要是:数学抽象的思想;数学推
6、理的思想;数学建模的思想。其中正确的是()。A.B.C.D.【答案】C18、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】B19、不符合溶贫骨髓象特征的是()A.骨髓增生明显活跃B.粒红比值减低C.三系显著减低D.无巨幼红细胞E.以上都是【答案】C20、下列哪一项是恶性组织细胞病的最重要特征A.骨髓涂片见到形态异常的组织细胞B.全血细胞减少C.血涂片找到不典型的单核细胞D.起病急,高热,衰竭和进行性贫血E.以上都不正确【答案】A21、下列关于椭圆的叙述:平面内到两个定点的距离之和等于常数的动点轨迹是椭圆;平面内到定直线和直
7、线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆;从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;平面与圆柱面的截面是椭圆。正确的个数是()A.0B.1C.2D.3【答案】C22、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】A23、不符合溶血性贫血骨髓象特征的是A.小细胞低色素性贫血B.粒/红比值减低C.红细胞系统增生显著D.可见 H-J 小体和卡.波环等红细胞E.骨髓增生明显活跃【答案】A24、DIC 时血小板计数一般范围是A.(100300)10B.(50100)10C.(100300)10D.(100300)10E.(100
8、250)10【答案】B25、移植排斥反应属于A.型超敏反应B.型超敏反应C.型超敏反应D.型超敏反应E.以上均正确【答案】D26、出血时间测定狄克法正常参考范围是()A.26 分钟B.12 分钟C.27 分钟D.13 分钟E.24 分钟【答案】D27、珠蛋白生成障碍性贫血的主要诊断依据是A.粒红比缩小或倒置B.血红蛋白尿C.外周血出现有核红细胞D.血红蛋白电泳异常E.骨髓中幼稚红细胞明显增高【答案】D28、皮内注射 DNP 引起的 DTH 反应明显降低是因为()A.接受抗组胺的治疗B.接受大量 X 线照射C.接受抗中性粒细胞血清治疗D.脾脏切除E.补体水平下降【答案】B29、下列描述的四种教学
9、场景中,使用的教学方法为演算法的是()。A.课堂上老师运用实物直观教具将教学内容生动形象地展示给学生B.课堂上老师运用口头语言,辅以表情姿态向学生传授知识C.课堂上在老师的指导下,学生运用所学知识完成课后练习D.课堂上老师向学生提出问题,并要求学生回答,以对话方式探索新知识【答案】C30、出血时间测定狄克法正常参考范围是()A.26 分钟B.12 分钟C.27 分钟D.13 分钟E.24 分钟【答案】D31、义务教育阶段数学课程目标分为总体目标和学段目标,从()等几个方面加以阐述。()。A.B.C.D.【答案】C32、结肠癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答
10、案】B33、36 个月胚胎的主要造血器官是A.骨髓B.脾脏C.卵黄囊D.肝脏E.胸腺【答案】D34、下列选项中,()属于影响初中数学课程的社会发展因素。A.数学的知识、方法和意义B.从教育的角度对数学所形成的价值认识C.学生的知识、经验和环境背景D.当代社会的科学技术、人文精神中蕴含的数学知识与素养等【答案】D35、下列说法中不正确的是()。A.教学活动是教师单方面的活动,教师是学习的领导者B.评价既要关注学生学习的结果、也要重视学习的过程C.为了适应时代发展对人才培养的需要,新课程标准指出:义务教育阶段的数学教育要特别注重发展学生的应用意识和创新意识D.总体目标是义务教育阶段数学课程的终极目
11、标,而学段目标则是总体目标的细化和学段化【答案】A36、男性,10 岁,发热 1 周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下 1cm。入院时血常规结果为:血红蛋白量 113gL:白细胞数 810A.涂抹细胞B.异型淋巴细胞C.淋巴瘤细胞D.原始及幼稚淋巴细胞E.异常组织细胞【答案】B37、骨髓涂片中见异常幼稚细胞占 40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),-NBE(+),且不被 NaF 抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C.急性粒细胞性白血病D.急性早幼粒白血病E.粒-单细
12、胞性白血病【答案】B38、提出“一笔画定理”的数学家是()。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】C39、有限小数与无限不循环小数的关系是()。A.对立关系B.从属关系C.交叉关系D.矛盾关系【答案】A40、纤溶酶的主要作用是水解()A.因子B.因子aC.因子D.因子和aE.因子【答案】D41、流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括A.液流系统B.光路系统C.抗原抗体系统D.信号测量E.细胞分选【答案】C42、关于补体的
13、理化特性描述错误的是A.存在于新鲜血清及组织液中具有酶样活性的球蛋白B.补体性质不稳定,易受各种理化因素的影响C.在 010下活性只保持 34 天D.正常血清中含量最高的补体成分为 C2E.补体大多数属于球蛋白【答案】D43、通常下列哪种疾病不会出现粒红比例减低()A.粒细胞缺乏症B.急性化脓性感染C.脾功能亢进D.真性红细胞增多症E.溶血性贫血【答案】B44、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】B45、普通高中数学课程标准(实验)设置了四个选修系列,其中选修系列 l是为希望在人文社会科学等方面发展学生而设置的,
14、下列内容不属于选修系列1 的是()。A.矩阵变换B.推理证明C.导数及应用D.常用逻辑用语【答案】A46、关于 APTT 测定下列说法错误的是A.一般肝素治疗期间,APTT 维持在正常对照的 1.53.0 倍为宜B.受检者的测定值较正常对照延长超过 10 秒以上才有病理意义C.APTT 测定是反映外源凝血系统最常用的筛选试验D.在中、轻度 F、F、F缺乏时,APTT 可正常E.在 DIC 早期 APTT 缩短【答案】C47、移植排斥反应属于A.型超敏反应B.型超敏反应C.型超敏反应D.型超敏反应E.以上均正确【答案】D48、抗原抗体检测A.CPi-CH50B.AP-CH50C.补体结合试验D.
15、甘露聚糖结合凝集素E.B 因子【答案】C49、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化脓性扁桃体。血细菌培养发现 A 群 B 溶血性链球菌阳性,尿蛋白(+),尿红细胞(+)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是A.血清 AS01200IU/mlB.血清肌酐 18mol/LC.血清 BUN13.8mmol/LD.血清补体 CE.尿纤维蛋白降解产物显著增高【答案】D50、单核巨噬细胞的典型的表面标志是A.CD2B.CD3C
16、.CD14D.CD16E.CD28【答案】C大题(共大题(共 1010 题)题)一、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须
17、精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后
18、再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。二、以普通高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集合主要内容的教学设计思路与方法。(12 分)【答案】三、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】四、案例
19、:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所
20、以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执
21、行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。五、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】六、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这
22、是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计的能力。七、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什
23、么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两
24、数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。八、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特
25、征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性九、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长
26、率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】一十、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。