D82数量积向量积.ppt

上传人:wuy****n92 文档编号:70756323 上传时间:2023-01-27 格式:PPT 页数:25 大小:868KB
返回 下载 相关 举报
D82数量积向量积.ppt_第1页
第1页 / 共25页
D82数量积向量积.ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《D82数量积向量积.ppt》由会员分享,可在线阅读,更多相关《D82数量积向量积.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、*三、向量的混合积三、向量的混合积 第二节一、两向量的数量积一、两向量的数量积二、两向量的向量积二、两向量的向量积机动 目录 上页 下页 返回 结束 数量积 向量积 第八八章 一、两向量的数量积一、两向量的数量积沿与力夹角为的直线移动,1.定义定义设向量的夹角为,称 记作数量积(点积).引例引例.设一物体在常力 F 作用下,位移为 s,则力F 所做的功为机动 目录 上页 下页 返回 结束 记作故2.性质性质为两个非零向量,则有 机动 目录 上页 下页 返回 结束 3.运算律运算律(1)交换律(2)结合律(3)分配律机动 目录 上页 下页 返回 结束 4.数量积的坐标表示数量积的坐标表示设则当为

2、非零向量时,由于两向量的夹角公式,得机动 目录 上页 下页 返回 结束 例例1.已知三点 AMB.解解:则求故机动 目录 上页 下页 返回 结束 为 ).求单位时间内流过该平面域的流体的质量P(流体密度例例2.设均匀流速为的流体流过一个面积为 A 的平面域,与该平面域的单位垂直向量解解:单位时间内流过的体积的夹角为且为单位向量机动 目录 上页 下页 返回 结束 二、两向量的向量积二、两向量的向量积引例引例.设O 为杠杆L 的支点,有一个与杠杆夹角为符合右手规则矩是一个向量 M:的力 F 作用在杠杆的 P点上,则力 F 作用在杠杆上的力机动 目录 上页 下页 返回 结束 1.定义定义定义向量方向

3、:(叉积)记作且符合右手规则模:向量积,称引例中的力矩思考思考:右图三角形面积S机动 目录 上页 下页 返回 结束 2.性质性质为非零向量,则3.运算律运算律(2)分配律(3)结合律证明证明:机动 目录 上页 下页 返回 结束 4.向量积的坐标表示式向量积的坐标表示式设则机动 目录 上页 下页 返回 结束 向量积的行列式计算法向量积的行列式计算法机动 目录 上页 下页 返回 结束 例例3.已知三点角形 ABC 的面积 解解:如图所示,求三机动 目录 上页 下页 返回 结束*三、向量的混合积向量的混合积1.定义定义 已知三向量称数量混合积混合积.记作几何意义几何意义 为棱作平行六面体,底面积高故

4、平行六面体体积为则其机动 目录 上页 下页 返回 结束 2.混合积的坐标表示混合积的坐标表示设机动 目录 上页 下页 返回 结束 3.性质性质(1)三个非零向量共面的充要条件是(2)轮换对称性:(可用三阶行列式推出)机动 目录 上页 下页 返回 结束 例例6.已知一四面体的顶点4),求该四面体体积.解解:已知四面体的体积等于以向量为棱的平行六面体体积的故机动 目录 上页 下页 返回 结束 例例7.证明四点共面.解解:因故 A,B,C,D 四点共面.机动 目录 上页 下页 返回 结束 内容小结内容小结设1.向量运算加减:数乘:点积:叉积:机动 目录 上页 下页 返回 结束 混合积:2.向量关系:机动 目录 上页 下页 返回 结束 思考与练习思考与练习1.设计算并求夹角 的正弦与余弦.答案答案:2.用向量方法证明正弦定理:机动 目录 上页 下页 返回 结束 证证:由三角形面积公式所以因机动 目录 上页 下页 返回 结束 作业作业 P22 6,9第三节 目录 上页 下页 返回 结束 备用题备用题1.已知向量的夹角且解:解:机动 目录 上页 下页 返回 结束 在顶点为三角形中,求 AC 边上的高 BD.解:解:三角形 ABC 的面积为 2.而故有机动 目录 上页 下页 返回 结束

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁