《江西省2023年教师资格之中学数学学科知识与教学能力能力提升试卷A卷附答案.doc》由会员分享,可在线阅读,更多相关《江西省2023年教师资格之中学数学学科知识与教学能力能力提升试卷A卷附答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、江西省江西省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力能力提升试卷能力能力提升试卷 A A 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、多发性骨髓瘤患者,血清中 M 蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA 型B.IgD 型C.轻链型D.不分泌型E.IgG 型【答案】B2、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。影响免疫浊度分析的重要因素A.温育系统故障B.伪浊度C.边缘效应D.
2、携带污染E.比色系统故障【答案】B3、血浆游离 Hb 的正常参考范围是()A.15mg/dlB.510mg/dlC.1015mg/dlD.1520mg/dlE.2025mg/dl【答案】A4、单核-吞噬细胞系统和树突状细胞属于A.组织细胞B.淋巴细胞C.辅佐细胞D.杀伤细胞E.记忆细胞【答案】C5、()著有几何原本。A.阿基米德B.欧几里得C.泰勒斯D.祖冲之【答案】B6、女,20 岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断为系统性红斑狼疮(SLE),下列可作为 SLE 特异性标志的自身抗体为A.抗 DNP 抗体和 ANAB.抗 dsDNA 抗体和抗 Sm
3、抗体C.抗 dsDNA 抗体和 ANAD.抗 ssDNA 抗体和抗 ANAE.抗 SSA 抗体和抗核蛋白抗体【答案】B7、A.淋巴细胞B.成熟红细胞C.胎盘滋养层细胞D.上皮细胞E.神经细胞【答案】A8、设随机变量 XN(0,1),X 的的分布函数为(x),则 P(|X|2)的值为()A.21-(2)B.2(2)-1C.2-(2)D.1-2(2)【答案】A9、血小板膜糖蛋白b 与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能【答案】A10、纤溶酶的主要作用是水解()A.因子B.因子aC.因子D.因子和aE.因子【答案】D11、创新意识的培养是现代数学
4、教育的基本任务,应体现在数学教与学的过程之中,下面表述中不适合在教学中培养学生创新意识的是()。A.发现和提出问题B.寻求解决问题的不同策略C.规范数学书写D.探索结论的新应用【答案】C12、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B13、下列疾病在蔗糖溶血试验时可以出现假阳性的是A.巨幼细胞性贫血B.多发性骨髓瘤C.白血病D.自身免疫性溶贫E.巨球蛋白血症【答案】C14、多发性骨髓瘤患者,血清中 M 蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样
5、变,属于免疫学分型的哪一型()A.IgA 型B.IgD 型C.轻链型D.不分泌型E.IgG 型【答案】B15、下列哪一项是恶性组织细胞病的最重要特征A.骨髓涂片见到形态异常的组织细胞B.全血细胞减少C.血涂片找到不典型的单核细胞D.起病急,高热,衰竭和进行性贫血E.以上都不正确【答案】A16、九章算数注的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A17、单核巨噬细胞的典型的表面标志是A.CD2B.CD3C.CD14D.CD16E.CD28【答案】C18、男性,30 岁,黄疸,贫血 4 年,偶见酱油色尿。检验:红细胞 2.1510A.Coomb 试验B.血清免疫球蛋白测定C.Ham
6、试验D.尿隐血试验E.HBsAg【答案】C19、下列语句是命题的是()。A.B.C.D.【答案】D20、下列内容属于义务教育数学课程标准(2011 年版)第三学段“数与式”的是()。A.B.C.D.【答案】C21、肾上腺素试验是反映粒细胞的A.分布情况B.储备情况C.破坏情况D.消耗情况E.生成情况【答案】A22、成熟红细胞的异常形态与疾病的关系,下列哪项不正确()A.点彩红细胞提示铅中毒B.棘形红细胞提示脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰形红细胞提示 HbF 增高E.红细胞缗钱状形成提示高纤维蛋白原血症【答案】D23、设 f(x)与 g(x)是定义在同一区间增函数,下列结论一定正确的
7、是()。A.f(x)+g(x)是增函数B.f(x)-g(x)是减函数C.f(x)g(x)是增函数D.f(g(x)是减函数【答案】A24、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、扁桃体【答案】A25、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112159flD.MCH3249pgE.MCHC0.320.36【答案】B26、属于所有 T 细胞共有的标志性抗原的是A.CD2B.CD3C.CD4D.CD8E.CD20【答案】B27、下列描述为演绎推理的是()。A.从-
8、般到特殊的推理B.从特殊到-般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】A28、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案】C29、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】A30、男,17 岁、发热、牙跟出血 15d,化验检查:血红蛋白 65g/L,白细胞2.2
9、10A.ITPB.AAC.急性白血病D.类白血病反应E.CML【答案】D31、柯萨奇病毒感染引起糖尿病A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】D32、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B33、某女,30 岁,乏力,四肢散在瘀斑,肝脾不大,血红蛋白 45g/L,红细胞1.0610A.粒细胞减少症B.AAC.巨幼红细胞贫血D.急性白血
10、病E.珠蛋白生成障碍性贫血【答案】B34、高中数学课程是义务教育阶段后普通高级中学的主要课程,具有()。A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】A35、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B36、属于检测型超敏反应的试验A.Coombs 试验B.结核菌素皮试C.挑刺试验D.特异性 IgG 抗体测定E.循环免疫复合物测定【答案】B37、下列疾病在蔗糖溶血试验时可以出现假阳性的是A.巨幼细胞性贫血B.多发性骨髓瘤C.白血
11、病D.自身免疫性溶贫E.巨球蛋白血症【答案】C38、下列哪项不是 B 细胞的免疫标志A.CD10B.CD19C.CD64D.HLA-DRE.CD22【答案】C39、先天性无丙球蛋白血症综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】B40、下列叙述哪项是正确的()A.多发性骨髓瘤外周血可检到瘤细胞B.慢性粒细胞白血病外周血可检到幼稚粒细胞C.淋巴肉瘤细胞常在早期出现在外周血中D.急性粒细胞白血病外周血可找到原始粒细胞E.急性淋巴细胞白血病外周血中可找到涂抹细胞【答案】B41、世界上讲述方程最早的著作是()。A
12、.中国的九章算术B.阿拉伯花拉子米的代数学C.卡尔丹的大法D.牛顿的普遍算术【答案】A42、下列描述的四种教学场景中,使用的教学方法为演算法的是()。A.课堂上老师运用实物直观教具将教学内容生动形象地展示给学生B.课堂上老师运用口头语言,辅以表情姿态向学生传授知识C.课堂上在老师的指导下,学生运用所学知识完成课后练习D.课堂上老师向学生提出问题,并要求学生回答,以对话方式探索新知识【答案】C43、临床有出血症状且 APTT 和 PT 均正常可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】D44、典型的 T 细胞缺陷型疾病半甲状腺功能低下的是A.选择性 IgA 缺陷病B.先天性
13、胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】B45、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】B46、硝基四氮唑蓝还原试验主要用于检测A.巨噬细胞吞噬能力B.中性粒细胞产生胞外酶的能力C.巨噬细胞趋化能力D.中性粒细胞胞内杀菌能力E.中性粒细胞趋化能力【答案】D47、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。同卵双生兄弟间的器官移植属于A.自身移植B.同系移植C.同种移植D.异种移植E.胚胎组织移植【答案】B48、下列数学概念中,用“属概念加和差”
14、方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B49、临床有出血症状且 APTT 和 PT 均正常可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】D50、下列关于椭圆的叙述,正确的是()。A.平面内两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比大于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点D.平面与圆柱面的截线是椭圆【答案】C大题(共大题(共 1010 题)题)一、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2
15、.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计
16、的能力。二、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”
17、的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计的能力。三、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。四、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够
18、是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n
19、只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。五、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形
20、的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三
21、维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感
22、态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。六、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容
23、完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会
24、根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。七、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务
25、,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性八、严谨性与量力
26、性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不
27、谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。九、在弧
28、度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】一十、义务教育教学课程标准(2011 年版)关于
29、平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以
30、及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。